Phương trình hoành độ giao điểm: \(x^2-\left(2m-1\right)x+m-2=0\)
\(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=\left(2m-2\right)^2+5>0;\forall m\)
\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt
\(x_1y_1+x_2y_2=0\)
\(\Leftrightarrow x_1.x_1^2+x_2.x_2^2=0\) (do \(y_1=x_1^2;y_2=x_2^2\))
\(\Leftrightarrow x_1^3+x_2^3=0\)
\(\Leftrightarrow x_1^3=-x_2^3\Leftrightarrow x_1=-x_2\)
\(\Leftrightarrow x_1+x_2=0\)
Mà \(x_1+x_2=2m-1\Rightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)