Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Na

cho P= ( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)+ \(\dfrac{4\sqrt{x}-3}{2\sqrt{x}-x}\)):\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)

a) Rút gọn P

b) Tìm các giá trị của x để P>0

c) Tính giá trị nhỏ nhất của \(\sqrt{P}\)

d) Tìm giá trị của m để giá trị x>1 thỏa mãn: m(\(\sqrt{x}-3\)). P = 12m \(\sqrt{x}-4\)

Mysterious Person
21 tháng 9 2018 lúc 6:07

điều kiện xác định : \(x>0;x\ne4\)

a) ta có : \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)

\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\) \(\Leftrightarrow P=\left(\dfrac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\left(\sqrt{x}-2\right)^2-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{4}\right)\) \(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{4}\)

b) để \(P>0\) \(\Leftrightarrow\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{4}>0\) \(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-3< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>9\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 9\\x< 1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>9\\x< 1\end{matrix}\right.\)

kết hợp với điều kiện xác định ta có : \(0< x< 1\) hoặc \(x>9\)

c) ta có : \(\sqrt{P}=\sqrt{\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{4}}\ge0\forall x\)

dấu "=" xảy ra khi \(\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

vậy ....................................................................................................

d) ta có : \(m\left(\sqrt{x}-3\right)P=12m\sqrt{x}-4\)

\(\Leftrightarrow m\left(\sqrt{x}-3\right)\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{4}=12m\sqrt{x}-4\)

\(\Leftrightarrow m\left(x-6\sqrt{x}+9\right)\left(\sqrt{x}-1\right)=48m\sqrt{x}-4\)

nhân tung ra giải bình thường ............(mk nghỉ có vấn đề ở câu d này nha )

Na
20 tháng 9 2018 lúc 22:34

Anh Mysterious Person giúp e với

Em cảm ơn ạ


Các câu hỏi tương tự
Lê Hương Giang
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
Han Sara
Xem chi tiết
nchdtt
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
Chóii Changg
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
nguyen ngoc son
Xem chi tiết