Trong không gian Oxyz, cho bốn điểm A(0;0;1), B(1;2;4), C(1;0;1) và D(2;1;2). Gọi (P) là mặt phẳng qua C,D và song song với đường thẳng AB. Phương trình của (P) là:
A. x - 2y + z - 2 = 0.
B. 3x - 2y - z - 2 = 0.
C. 3x - z - 2 = 0.
D. 3x - 2y - z - 1 = 0.
Trong không gian Oxyz cho điểm A(-4;-2;4) và đường thẳng d :
\(\begin{cases}x=-3+2t\\y=1-t,t\in R\\z=-1+4t\end{cases}\)
Viết phương trình đường thẳng \(\Delta\) đi qua A, cắt và vuông góc với đường thẳng d
Trong không gian Oxyz cho I(3; 1;-1) và M(1; 4;2). Mặt phẳng (P) qua M và tiếp xúc với mặt cầu tâm I bán kính IM. Phương trình (P) là:
A. 2x-3y-3z+16=0. B. -2x + 3y + 3z +16 = 0. C. 3x + y – z -5 =0. D. x+4y+z-18=0.
Cho A( -1, 3,-2) B(-3 ,7,-18) và (P): 2x -y +z+1 =0 .viết btmp (Q) chứa đt Ab và vuông góc (P)
Cho 3 điểm A ( 1;-2;0 ) B ( 2;-1;1 ) C ( 1;1;0 ) D ( 0;-2;0 ). Viết phương trình mặt phẳng đi qua trọng tâm G của tam giác ABC và vuông góc với CD
Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y-2}{2}=\dfrac{z}{1}\) và hai điểm \(A\left(1;-1;1\right)\), \(B\left(4;2;-2\right)\). Gọi Δ là đường thẳng đi qua \(A\) và vuông góc với \(d\) sao cho khoảng cách từ điểm \(B\) đến Δ là nhỏ nhất. Phương trình đường thẳng Δ là:
A. \(\dfrac{x-1}{-1}=\dfrac{y+1}{1}=\dfrac{z-1}{4}\) B. \(\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z-1}{4}\)
C. \(\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z-1}{4}\) D. \(\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z-1}{-4}\)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(\Delta:\left\{{}\begin{matrix}x=3+t\\y=-1-t\\z=-2+t\end{matrix}\right.,\left(t\in R\right)\); điểm \(M\left(1;2;-1\right)\) và mặt cầu \(\left(S\right):x^2+y^2+z^2-4x+10y+14z+64=0\). Gọi \(\Delta'\) là đường thẳng đi qua M, cắt \(\Delta\) tại A và cắt mặt cầu \(\left(S\right)\) tại B sao cho \(\frac{AM}{AB}=\frac{1}{3}\) (điểm B có hoành độ là số nguyên). Mặt phẳng trung trực đoạn AB có phương trình là:
A. \(2x+4y-4z-19=0\)
B. \(3x-6y-6z-62=0\)
C. \(2x-4y-4z-43=0\)
D. \(3x+6y-6z-31=0\)
Cho A(1;0;-2), B(2;1;3) và (P): 2x-2y+z-7=0. Gọi vecto u(1;b;c) là VTCP của đường thẳng D qua B, song song (P) sao cho khoảng cách từ A đến D nhỏ nhất. Tính S+b+2c
A. -5 B. 5 C.3 D. -3
Trong không gian Oxyz cho M(1;6;-7) và N(5;0;-1).Cho mặt phẳng (P): x + by +cz +d = 0; biết (P) // (Q) x+y-3z+4= 0 và (P) cách đều hai điểm M, N. Tổng b +c +d bằng
A. 20. B. -20. C. 4. D. 3.