a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó: ΔOAC=ΔOBC
Suy ra: CA=CB
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó: ΔCAD=ΔCBE
Suy ra: AD=BE
OE=OB+BE=OB+AD
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó: ΔOAC=ΔOBC
Suy ra: CA=CB
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó: ΔCAD=ΔCBE
Suy ra: AD=BE
OE=OB+BE=OB+AD
Mai tớ nộp đề cương rồi giúp tớ !!!!!!! _._
Cho góc nhọn xOy. Gọi C là 1 điểm thuộc tia phân giác của góc xOy
Kẻ CA vuông góc Ox ( A thuộc Ox ), kẻ CB vuông góc Oy ( B thuộc Oy )
a ) chứng minh CA = CB
b) Gọi D là giao điểm của BC và Ox, E là giao điểm của AC và Oy. So sánh các độ dài CD và CE
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Qua điểm A kẻ đường thẳng vuông góc với Ox tại A cắt Oy tại C, qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại D
a) Chứng minh rằng AD=BC
b)Gọi I là giao điểm của AC và BD. Chứng minh rằng IA=IB
c) Chứng minh rằng OI là tia phân giác của góc xOy
Cho góc nhọn xOy, Oz là tia phân giác của góc đó. Qua điểm A thuộc tia Ox kẻ đường thẳng song song với Oy cắt Oz ở M. Qua M kẻ đường thẳng song song với Ox cắt Oy ở B.
Tính:
a) Chứng minh OA=OB, MA=MB
b) Từ M kẻ MH vuông góc với Ox, MK vuông góc với Oy
Cho XOY nhọn , OF là tia phân giác của góc đó . Qua điểm A thuộc Ox kẻ đường thẳng song song với OY cắt OZ ở N
Qua M kẻ đường thẳng song song với Ox cắt OY ở B
Chứng minh :
a, OA = OB ; MA = MB
b, Từ M kẻ MH vuông góc với Ox ; MK vuông góc với OY . Chứng minh MH = MK
Bài tập 1 : Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OA < OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC.
a. Chứng minh: AD = BC
b. Chứng minh: Tam giác EAD và tam giác ECD
c. Chứng minh: OE là tia phân giác góc xOy
d. Chứng minh: OE vuông góc với AC
e. Gọi M là trung điểm của BD. Chứng minh: O, E, M thẳng hàng
f. Chứng minh: AC // BD
Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OA nhỏ hơn OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:
a) AD = BC
b) ΔEAB = ΔECD
c) OE là tia phân giác của góc xOy
Cho góc xOy có Oz là tia phân giác. Điểm C thuộc Oz. Trên các tia Ox, Oy lần lượt lấy các điểm A, B sao cho OA = OB.
a/ Chứng minh: tam giác AOC = tam giác BOC.
b/ Chứng minh: AC =BC. Và CO là tia phân giác của góc ACB.
c/ Đường thẳng AC cắt Oy ở E; dường thẳng BC cắt Ox ở F, EF cắt OC tại H. Chứng tỏ OE = OF và EF vuông góc với OH.
Cho góc nhọn xOy. Lấy M là một điểm nằm trên tia phân giác Ot của góc xOy. Kẻ MQvuông góc với Ox(Qthuộc Ox); Mh vuông góc với Oy(H thuộc Oy)
a) Chứng minh MQ=MH
b) Nối QH cắt Ot ở G. Chứng minh GQ=GH
c) Chứng minh QH vuông góc với OM
cho góc nhọn xOy trên Ox lấy điểm A , trên Oy lấy điểm B sao cho OA=OB . Từ A kẻ đường thẳng vuông góc với Ox cắt Oy ở E . Từ B kẻ đường thẳng vuông góc với Oy cắt Ox ở F. AE và BF cắt nhau tại I
a)chứng minh AE = BF
b) chứng minh tam giác AFI = tam giác BEI
c) chứng minh OI là tia phân giác của góc AOB