Cho đường tròn (O:R) có hai đường kính AB và CD vuông góc với nhau.Gọi I là trung điểm của OB. Tia CI cắt đường tròn (O:R) tại E. Nối AE cắt CD tại H, nối BD cắt AE tại K.
a.CMR : Tứ giác OIED nội tiếp
b.CMR : AH.AE=OA.OB=2R^2
Cho tam giác ABC nhọn. Đg tròn đk BC cắt AB,AC tại E,D. BD cắt CE tại H.AH cắt BC tại F.
a) C/m AF vuông góc BC
b) M là trđ AH. C/m MD vuông góc OD.
c) AH cắt DE tại K. C/m K là trực tâm tam giác MBC.
Cho (O) đk AB. C e OB và H là trđ AC. Qua H kẻ dây DE vuông góc với AC. BD cắt đg tròn đk BC tại D.
a) C/m DHCK nt
b) C/m E,C,K thẳng hàng
c) Qua K kẻ đg vuông góc DE cắt (O) tại M,N. M e cung DE nhỏ. C/m EM^2 + DN^2 = 4R^2
Bài 1 : Cho tam giác ABC cân tại A ( có AB > BC ) nội tiếp đường tròn ( O , R ) . Tiếp tuyến tại B , C lần lượt cắt tia AC , AB tại D , E . Gọi I là giao điểm của BD và CE a ) CM :Ba điểm I,O, A thẳng hàng. b) CM: góc EBD = góc ECD . c ) Cho góc BAC = 45. Tính diện tích tam giác ABC theo R .
Bài 2 : Từ một điểm A nằm ở ngoài đường tròn ( O ; R ) . Vẽ hai tiếp tuyến AB , AC với đường tròn ( B , C là các tiếp điểm ) . Vẽ dây BD vuông góc với BC . Đường vuông góc với DO tại O cắt tia DB tại E . Chứng minh tứ giác AOBE là hình thang cân .
Bài 3 : Cho đường tròn ( O ) đường kính AB .Lấy điểm M trên đường tròn ( M khác A ; B ) .Tiếp tuyến tại M cắt tiếp tuyến tại A ở D , cắt tiếp tuyến tại B ở C, AC cắt BD tại E . Chứng minh ME vuông góc với AB .
Bài 4 : Cho đường tròn ( O ; R ) và điểm A ở ngoài đường tròn với OA = 2R . Từ A vẽ hai tiếp tuyến AB và AC với đường tròn ( O ) . a ) Bốn điểm A , B , O , C cùng thuộc một đường tròn . b ) CM : Tam giác ABC đều . c ) Vẽ đường kính BOD. CMR: DC song song OA . d ) Đường trung trực của BD cắt AC tại S . Gọi I là trung điểm của OA . CMR SI là tiếp tuyến của đường tròn ( O ) .
Bài 5 : Cho đường tròn ( O ; R ) đường kính AB . Vẽ dây CD vuông góc với AB tại trung điểm K của OB . a ) CM Tứ giác OCBD là hình thoi . b ) Đường tròn tâm I đường kính OA cắt AC tại E . CMR : Ba điểm D, O , E thẳng hàng . c ) Tinh KE: biết R = 12 cm . | d ) CMR: KE là tiếp tuyến của đường tròn (I ) .
cho tam giác ABC ( AB < AC). lấy D thuộc AB. đường tròn tâm O đường kính BD cắt CD tại E và cắt AE tại E. CMR: AB là TPG của góc CBG
cho tam giác ABC ( AB < AC). lấy D thuộc AB. đường tròn tâm O đường kính BD cắt CD tại E và cắt AE tại E. CMR: AB là TPG của góc CBG
Cho (O) đk BC=2R. Trên tia đối BC lấy A/ AB<R.Từ A kẻ cát tuyến ADE với (O). Đường vuông góc AB tại A cắt CD tại M. MB cắt (O) , AD tại H và K.
a) C/m ABDM nội tiếp
b) C/m EH vuông góc AC
c) Cm khi cát tuyến ADE thay đổi thì trọng tâm tam giác ACE luôn nằm trên đg tròn cố định
Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
1.Cho (O;R) cắt (O'R') tại A,B.(A,O,B) không thẳng hàng.C thuộc tia đối AB.Kẻ tiếp tuyến CD,CE với (O)(D,E là tiếp điểm,E trong (O')).AD và AE cắt (O) tại M,N.DE cắt MN tại I, OO' cắt AB,DI tại H,F.C/m:
a/FE.HD=FD.HE
b/MB.EB.DI=IB.AN.DB
c/O'I vuông góc với MN