cho tam giác ABC ( AB < AC). lấy D thuộc AB. đường tròn tâm O đường kính BD cắt CD tại E và cắt AE tại E. CMR: AB là TPG của góc CBG
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho đường tròn tâm O đường kính AB , E thuộc đường tròn O ( AE < BE), M thuộc tia AE. Nối BM cắt đường tròn O tại F . Nối AF cắt BE tại H. Gọi I là trung điểm MH. Chứng minh OI vuông góc EF
Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
Cho nửa đường tròn tâm O đường kính AB, dây CD các đường vuông góc với C,D tại C, D cắt AB ở E, F .Tính S tứ giác CDFE biết AB=50 cm CD=14cm
cho abc (ab>ac) nội tiếp tam giác abc đường tròn tâm o có đường kính ab gội h là trung đ của bc , tiếp tuyến tại b của đường tròn tâm o cắt oh tại d a chứng minh dh.do=bd2
Cho tam giác ABC vuông tại A, M thuộc AC, đường tròn tâm O đường kính MC cắt BC tại E, cắt tia BM ở F. AF cắt (O) tại điểm thứ hai là I. Gọi D là giao điểm thứ hai của (O) với AE. Nếu điểm M chạy trên đoạn AC thì điểm F chạy trên đường cố định nào?