a: góc ABK=1/2*sđ cung AK
góc CBK=1/2*sđ cung CK
mà góc ABK=góc CBK
nên sđ cung AK=sđ cung CK
=>OK vuông góc AC
c: Xét ΔKCM và ΔKBC có
góc KCM=góc KBC
góc CKM chung
=>ΔKCM đồng dạng với ΔKBC
=>KC/KB=KM/KC
=>KC^2=KB*KM
a: góc ABK=1/2*sđ cung AK
góc CBK=1/2*sđ cung CK
mà góc ABK=góc CBK
nên sđ cung AK=sđ cung CK
=>OK vuông góc AC
c: Xét ΔKCM và ΔKBC có
góc KCM=góc KBC
góc CKM chung
=>ΔKCM đồng dạng với ΔKBC
=>KC/KB=KM/KC
=>KC^2=KB*KM
Cho (O) và một dây cung AC cố định. Trên cung lớn AC lấy điểm B bất kì. Phân giác của góc ABC cắt cạnh AC tại M và cắt (O) tại K. Kẻ đường cao BH của tam giác ABC
a)Chứng minh OK⊥AC
b)Chứng minh BM là tia phân giác của góc OBH
c)Chứng minh KC2=KM.KB
Cho nửa đường tròn (O) đường kính AB = 2R.Điểm C cố định trên nửa đường tròn.Điểm M thuộc cung AC (M≠A,C).Hạ MH\(\perp\)AB tại H,tia MB cắt CA tại E,kẻ EI\(\perp\)AB tại I.Gọi K là giao điểm của AC và MH . Chứng minh rằng :
a) Tứ giác BHKC là tứ giác nội tiếp và AK.AC=AH.AB
b)AE.AC+BE.BM không phụ thuộc vị trí của điểm M trên cung AC.
c)Chứng minh đường tròn ngoại tiếp △MIC luôn đi qua 2 điểm cố định
Cho nửa đường tròn (O; R) đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại điểm C. Trên cung CB lấy một điểm M bất kì. Kẻ CH vuông góc với AM tại H. Gọi N là giao điểm của OH và MB.
a. Chứng minh tứ giác CHOA nội tiếp được.
b. Chứng minh ˆCAO=ˆONB=45°CAO^=ONB^=45°
c. OH cắt CB tại điểm I và MI cắt (O) tại điểm thứ 2 là D. Chứng minh
CM // BD
Giải giúp mình câu c với ạ
Cho tam giác ABC nội tiếp đường tròn tâm O, gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M chứng minh
a) ba điểm AED thẳng hàng
b) chứng minh tứ giác BECD nội tiếp
c) Tìm 2 cặp tam giác đồng dạng
Help!! mời các cao nhân vào giúp
cho tam giác ABC nội tiếp đường tròn (O) , BD và CE lần lượt là các tia phân giác xủa góc ABC , ACB ( D , E thuộc (O) ) cắt nhau tại I . DE cắt AB , AC tại M, N . Chứng minh Tam giác AMN cân và tam giác AID cân
( vẽ hình giúp em với ạ )
Từ A nằm ngoài (O). Kẻ 2 tia tiếp tuyến AB,AC. BC cắt OA tại E. K trên cung nhỏ BC. Tiếp tuyến tại KC cắt AB tại P và Q. 1 đường thẳng vuông góc với OA tại O cắt AB, AC tại M và N.
a) Chứng minh: tứ giác ABOC nội tiếp
b) Chứng minh: OE. OA = R2
c) Chu vi △ APQ không đổi khi K di chuyển
d) Chứng minh: PM + PQ ≥ MN
Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròm (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và SC lần lượt tại M và N. Chứng minh rằng: a) tam giác AMN là tam giác cân b) các tam giác EAI và DAI là những tam giác cân c) Tứ giác AMIN là hình thoi
cho(O;R), đường kính AB, M là trung điểm của OA. Qua M vẽ dây cung vuong góc với AB, cắt đường tròn tại C,D.
a) chứng minh tam giác OAC đều.
b) tính ABC và cạnh CD theo R.
c) chứng minh tam giác BCD đều
Bài25. Cho đường tròn (O; R) và dây AB (AB < 2R). Gọi C là điểm chính giữa cung nhỏ AB, lấy điểm D trên cung lớn AB ( AD > BD). Dây AB cắt OC, CD lần lượt tại I và E. Từ B kẻ BH vuông góc với CD tại H. Chứng minh: BCIH là tứ giác nội tiếp. Chứng minh: CE. CD không phụ thuộc vào vị trí của điểm D trên cung lớn AB. Tia IH cắt BD tại F. Chứng minh: AD = 2IF. Xác định vị trí của D trên cung lớn AB sao cho chu vi của tam giác OBF đạt giá trị lớn nhấBài 28. Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Hạ OA vuông góc với d tại A. Gọi B là một điểm thuộc đường thẳng d ( B không trùng A). Qua B kẻ hai tiếp tuyến BC, BD tới đường tròn (C, D là tiếp điểm). Nối CD cắt OB tại E, cắt OA tại F. Chứng minh: bốn điểm B, C, O, D thuộc một đường tròn. Chứng minh: OA. OF = OB . OE Đoạn thẳng OB cắt đường tròn (O) tại I. Chứng minh: I cách đều ba cạnh của tam giác BCD. Tìm vị trí của B trên đường thẳng d để √(OE.EF) đạt giá trị lớn nhất.Bài 29. Cho đường tròn nửa (O), đường kính AB = 2R. Gọi Ax, By lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Lấy điểm K nằm giữa A và B (K không trùng A, B) và điểm M thuộc nửa đường tròn (O) (M không trùng A, B). Đường thẳng vuông góc với MK tại M cắt Ax, By lần lượt tại C và D. Chứng minh: ACMK là tứ giác nội tiếp. Chứng minh: (MDK) ̂=(MBK) ̂ . Từ đó chứng minh: CK DK. Gọi giao điểm AM và CK là E, giao điểm của BM và DK là F. Tứ giác AEFK là hình gì? Tại sao? Với AM = R và K là trung điểm của AO. Tính EF/MK ?