a) Xét (O) có
OA là một phần đường kính
CD là dây(gt)
OA⊥CD tại H(gt)
Do đó: H là trung điểm của CD(Định lí đường kính vuông góc với dây)
Xét tứ giác OCAD có
H là trung điểm của đường chéo CD(cmt)
H là trung điểm của đường chéo OA(gt)
Do đó: OCAD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành OCAD có OC=OD(=R)
nên OCAD là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: OCAD là hình thoi(cmt)
nên OC=CA=AD=OD(Các cạnh trong hình thoi OCAD)
Ta có: OC=OA(=R)
mà OC=CA(cmt)
nên OC=CA=OA
Xét ΔOCA có OC=CA=OA(cmt)
nên ΔOCA đều(Dấu hiệu nhận biết tam giác đều)
⇒\(\widehat{COA}=60^0\)(Số đo của một góc trong ΔOCA đều)
Ta có: OCAD là hình thoi(cmt)
nên OA là tia phân giác của \(\widehat{COD}\)(Tính chất hình thoi)
\(\Rightarrow\widehat{COD}=2\cdot\widehat{COA}\)
hay \(\widehat{COD}=120^0\)
Vậy: \(\widehat{COD}=120^0\)
Làm luôn phần c :)
c, Vì ACOD là hình thoi (cmb)
\(\Rightarrow\) OC // AD (tính chất hình thoi)
Mà E \(\in\) OC (CE là đường kính của đường tròn tâm O)
\(\Rightarrow\) CE // AD
Xét tứ giác ACED có: CE // AD (cmt)
\(\Rightarrow\) ACED là hình thang (dhnb hình thang)
Ta có: SACD = \(\dfrac{1}{2}\)AH.CD (1)
SDCE = \(\dfrac{1}{2}\)CD.DE (Vì tam giác DCE là tam giác vuông (cm được theo tứ giác nội tiếp) (2)
Từ (1) và (2) \(\Rightarrow\) SACED = SACD + SDCE = \(\dfrac{1}{2}\)AH.CD + \(\dfrac{1}{2}\)CD.DE = \(\dfrac{1}{2}\)CD.(AH + DE) (3)
Xét tam giác CED có: O là trung điểm của CE (gt)
H là trung điểm của CD (cma)
\(\Rightarrow\) OH là đường trung bình của tam giác CED (đ/n)
\(\Rightarrow\) OH = \(\dfrac{1}{2}\)DE
hay 2OH = DE
lại có AH = OH (H là trung điểm của OA theo gt)
\(\Rightarrow\) 2AH = DE (4)
Từ (3) và (4)
\(\Rightarrow\) SACED = \(\dfrac{1}{2}\)CD(AH + 2AH) = \(\dfrac{1}{2}\)CD.3AH = AH.SACD
Chúc bn học tốt! (Ko bt phần tính S kia cần gì thêm nx ko?)