a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN
b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD
Cho đường tròn (O), đường kính AD = 2R. Vẽ cung tâm D bán kính R, cung nàu cắt đường tròn (O) ở B và C
a) Tứ giác OBCD là hình gì ? Vì sao ?
b) Tính số đo các góc CBD, CBO, OBA ?
c) Chứng minh rằng tam giác ABC là tam giác đều ?
cho ΔABC nọn ội tiếp đường tròn O. Các đường co AD,BE,CF cắt nhau tại H.
a)CM các tứ giác BFEC,BFHD nt, xđ tâm và đk của đg tròn
b)Cm:DH là tia phân giác của EDF
c) Kẻ AD cắt BC tại M. Chứng minh tam giác BMH cân
Cho tam giác ABC có AB = AC nội tiếp đường tròn tâm O, đường cao AH
của tam giác cắt đường tròn (O) tại D
a) Chứng minh rằng AD là đường kính của đường tròn tâm O
b) Tính góc ACD
c) Cho BC = 12cm, AC = 10cm. Tính AH và bán kính của đường tròn tâm O
Cho đường tròn tâm O, đường kính AB. Lấy hai điểm C và D theo thứ tụ trên cung AB. Hai đường thẳng AC và BD cắt nhau tại M. Chứng minh đường kính đường tròn ngoại tiếp tam giác MCD vuông góc với AB
trên đường tròn tâm o có một cung ab và s là điểm chính giữa của cung đó trên dây ab lấy 2 điểm e và h các đường thẳng sh và se cắt đường tròn theo thứ tụ tại c và d chứng minh ehcd là 1tuws giác nội tiếp
cho nửa đg tròn tâm O có đg kính AB=2R.Trên tia tới của tia AB lấy điểm M bất kỳ từ M. Vẽ đg thẳng ko đi qua O,đg thẳng này cắt nửa đg tròn O tại C và D(C nằm giữa M và D).Gọi I là giao điểm của AD và BC vẽ IE vuông góc vs AB
a)CM:ΔMAD đồng dạng ΔMCB.Từ đó suy ra MA.MD=MC.MD
b)CM:tg BDIE nt
c)CM:DI là tia phân giác của góc CDE
Cho nửa đường tròn tâm O, đường kính AB và dây EF không cắt đường kính. Gọi I và K lần lượt là chân các đường vuông góc kẻ từ A và B đến EF. Chứng minh rằng IE = KF ?
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp tuyến). Qua C thuộc tia Ax, vé đường thẳng cắt đường tròn (O) tại hai điểm D và Eb(D nằm giữa C và E; D và E nằm về phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H
a. Chứng minh: tứ giác AOHC nội tiếp
b. Chứng minh: AC. AE = AD. CE