Xét (O) có
ΔABC nội tiếp
AB là đường kính
=>ΔABC vuông tại C
=>BC vuông góc AC
Xét ΔKAB vuông tại A có AC là đường cao
nên BC*BK=BA^2=4*R^2
Xét (O) có
ΔABC nội tiếp
AB là đường kính
=>ΔABC vuông tại C
=>BC vuông góc AC
Xét ΔKAB vuông tại A có AC là đường cao
nên BC*BK=BA^2=4*R^2
cho nửa đường tròn tâm 0 đường kính AB cố định .trên cùng 1 nửa mặt phẳng bờ AB chứa đg tròn vẽ tiếp tuyến Ax,By trên nửa đg tròn ấy lấy điểm C bất kỳ vẽ tiếp tuyến tại C cắt Ax,By tại D và E . cm AD+BE=DE AC cắt DO tại M ,BC cắt OE tại N tứ giác CMON ? .cm OM×OD+ON×OE ko đổi . AN cắt CO tại H điểm H di chuyển trên đg nào khi C di chuyển trên nửa đg tròn tâm O
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
a) Chứng minh rằng AD + BE = DE
b) AC cắt DO tại M, BC cắt OE tại N. Tứ giác CMON là hình gì? Vì sao?
c/ Chứng minh: MO.MD+ON.NE không đổi
d) AN cắt CO tại điểm H. Điểm H di chuyển trên đường nào khi C di chuyển trên nửa đường tròn (O; R).
Cho nửa đường tròn (O) đường kính AB, trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ hai tiếp tuyến Ax, By với đường tròn (O). Lấy M trên nửa đường tròn. Qua M kẻ tiếp tuyến thứ ba với nửa đường tròn, tiếp tuyến này cắt Ax, By theo thứ tự tại C và D.
a) Chứng minh điểm O nằm trên đường tròn (O') đường kính CD.
b) Gọi giao điểm của CO và AM là I, giao điểm của MB và OD là K. Chứng minh MO = IK.
c) Chứng minh AB là tiếp tuyến của đường tròn (O') đường kính CD.
d) Chứng minh rằng khi M chạy trên nửa đường tròn (O) thì trung điểm của MI chạy trên đường cố định.
Cho (o) dg kính AB. vẽ tia tiếp tuyến ax của (o). Trên cùng 1 mặt phẳng bờ ab có chứa tia Ax lấy M thuộc (o) sao cho MA>MB. Tiếp tuyên của (o) tại m cắt tia Ax tại D. Gọi H là giao điểm DO với AM.
a) CMR: A,D,M,O cùng 1 thuộc đg tròn
b) OA vuông góc với BC, OH. OD=R^2
Mọi ng giúp mình với
Cho nửa đường tròn (O;R). Trên cùng 1 nửa mp bờ là AB, dựng cac tiếp tuyến Ax, By của (O). Lấy M thuộc đường tròn. Tiếp tuyến tại M của (O) cắt Ax, By tại D, C tua AM, BM kéo dài cắt By, Ax tại F, E. Dựng MH vuông góc với AB. CHứng minh: AC, BD đi qua trung điểm I của MH
Cho tam giác ABC vuông tại A có AB < AC. Trên nửa mặt phẳng bờ là đường thẳng AC chứa điểm B vẽ nửa đường tròn (O) đường kính AC, nửa đường tròn này cắt BC tại D. Vẽ tiếp tuyến BE của nửa đường tròn (O)(với E là tiếp điểm, E khác 4). BO cắt AE tại điểm H . a) Chứng minh BAOE nội tiếp và BH.BO = BD.BC. b) Chứng minh DHOC là tứ giác nội tiếp và BHD=OHC. c) Tiếp tuyến tại C của nửa đường tròn (O) cắt AE tại F, AD cắt CE tại K. Chứng minh ba điểm B,K,F thẳng hàng.