b: Xét tứ giác NCIB có
góc NCI+góc NBI=180 độ
nên NCIB là tứ giác nội tiếp
=>góc ABC=góc INC
c: Xét tứ giác MCIA có
góc MCI+góc MAI=180 độ
nên MCIA là tứ giác nội tiếp
=>góc CAI=góc CMI
góc CMI+góc CNI=góc CAB+góc CBA=90 độ
=>góc MIN=90độ
b: Xét tứ giác NCIB có
góc NCI+góc NBI=180 độ
nên NCIB là tứ giác nội tiếp
=>góc ABC=góc INC
c: Xét tứ giác MCIA có
góc MCI+góc MAI=180 độ
nên MCIA là tứ giác nội tiếp
=>góc CAI=góc CMI
góc CMI+góc CNI=góc CAB+góc CBA=90 độ
=>góc MIN=90độ
Cho nửa đường tròn (O), đường kính AB. Từ một điểm M nằm trong nửa đường tròn đó (M ∉ AB), kẻ đường vuông góc với AB tại H (H ≠ A, B và O). Kéo dài AM và BM cắt nửa đường tròn (O) lần lượt tại C và D. Gọi N là giao điểm của AD và BC.a) Chứng minh 4 điểm D, M, C, N cùng thuộc một đường tròn.b) Chứng minh 3 điểm M, N, H thẳng hàng.c) Chứng minh OD là tiếp tuyến của đường tròn đi qua 4 điểm D, M, C, N.
cho đường tròn (O) đường kính AB=2R.Lấy điểm M thuộc đường tròn (O) (M khác A và B).Qua O kẻ đường thẳng vuông góc với AM cắt tiếp tuyến của (O) (tiếp điểm A) tại C a) c/m:tam giác AOC=tam giác MOC và MC là tiếp tuyến (O) b) Qua B kẻ tiếp tuyến với (O) cắt CM lại D. c/m tam giác COD vuông và AC.BD=R^2 c) kẻ MH vuông góc AB.C/m rằng ba đường AD,BC,MH đồng quy
Cho A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB,AC với đường tròn O có B,C là tiếp điểm
a)Cm AO vuông góc BC
b)Trên cung nhỏ BC lấy điểm M bất kì(M khác B,C,OA).Điểm M cắt AB và AC tại D và E.Cm chu vi tam giác ADE=2AB
c)Đường thẳng vuông góc AO tại O cắt AB,AC tại P và Q.CM 4PD.QE=PQ.PQ
Cho nửa đường tròn (O) đường kính AB vẽ tiếp tuyến tại A và B và 1 tiếp tuyến di động tiếp xúc (O) tại E và cắt hai tiếp tuyến kia tại C và D, kẻ EH vuông góc AB.
Cm HE là phân giác góc CHD
Gọi C là điểm nằm trên nửa đường tròn tâm O, đường kính AB (C khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, dựng tiếp tuyến Ax với nữa đường tròn. Tia BC cắt Ax tại I; tia phân giác góc IAC cắt nửa đường tròn tại E và cắt BC tại F; tia BE cắt AC tại K.
a) Chứng minh E, F, C, K cùng nằm trên một đường tròn
b) Chứng minh tam giác ABF cân.
c) Gọi G là trung điểm IA. Chứng minh GC là tiếp tuyến của nửa đường tròn O.
Em cần câu b, c ạ.
Bài 3: Cho nửa đường tròn (O) đường kính AB và AC là một dây của nó. Kẻ tiếp tuyến Ax và kẻ đường phân giác của góc CAx cắt nửa đường tròn tại E và cắt BC kéo dài tại D. a/C/m: AABD cân. b/ C/m: OE // BD. c/Gọi I là giao điểm của AC và BE. C/m: DI ⊥ AB. d/Tính độ dài AE, biết AB = 2cm và BAC = 20°,
cho nửa đường tròn tâm O , đường kính AB =2R và K là một điểm tùy ý trên nửa đường tròn ( K khác A và B). kẻ hai tiếp tuyến Ax và By tại M với nửa đường tròn . Qua K kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại M và H. a/cm: MH=AM+BH và AK//OH b/ cm: AM.BH=R2 c / đường thẳng AB và MH cắt nhau tại E.cm:ME.HK=MK.HE