cho nửa đường tròn tâm O đường kính AB. Lấy điểm C thuộc nửa đường tròn và điểm D nằm trên đoạn OA. Vẽ các tiếp tuyến Ax, By của nửa đường tròn. Đường thẳng qua C, vuông góc với CD cắt tiếp tuyến Ax, By lần lượt tại M và N
a, CM các tứ giác ADCM và BDCN nội tiếp đường tròn
b, CMR \(\widehat{MDN}=90^o\)
c, Gọi P là giao điểm của AC và DM, Q là giao điểm của BC và DN. CMR PQ // AB
ghi giả thiết và kết luận
Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F.
1. Chứng minh: góc EOF = 90o
2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng.
3. Gọi K là giao điểm của AF và BE, chứng minh MK vuông góc AB.
Cho nửa đường tròn tâm O đường kính AB = 2R. Vẽ tia tiếp tuyến Ax. Từ điểm M trên Ax kẻ MC (C nằm trên nữa đường tròn và khác A) sao cho MA bằng MC. Nối M với O; MB cắt nửa đường tròn (O) tại D.
a. Chứng minh: AMCO là tứ giác nội tiếp đường tròn. Xác định tâm I của đường tròn.
b. Chứng minh: MC là tiếp tuyến; MC2 = MD.MB.
Cho nửa đường tròn tâm O ,đường kính AB .Vẽ các tiếp tuyến Ax ,By với nửa đường tròn cùng phía đối với AB .Từ điểm M trên đường tròn(M khác A;B) vẽ tiếp tuyến với nửa đường tròn ,cắt Ax và By lần lượt tại C và D. cmr mn=nh
cho nửa đường tròn tâm O đường kính AB từ a,b kẻ 2 tiếp tuyến Ax và By qua điểm M thuộc nửa đường tròn tâm O kẻ tiếp tuyến thứ 3 cắt tiếp tuyến Ax và By lần lượt ở E và F
a) CM: AEMO nội tiếp
b) AM cắt OE ở P , BM cắt OF ở Q chứng minh MPOQ là HCN
cho nửa đường tròn tâm O, đường kính AB và C là 1 điểm nằm trên nửa đường tròn sao cho C khác A,B. Trên cung AC lấy điểm D (D khác A,C). Gọi H là hình chiếu vuông góc của C trên AB và E là giao điểm của BD và CH
a. CMR: tứ giác ADEH là tứ giác nt
b. CM: góc ACO = góc HCB và AB.AC = AC.AH + BC.CH
Cho Ax và By là hai tiếp tuyến của đường tròn tâm O đường kính AB = 2R. Qua điểm M thuộc đường tròn ( M khác A, B ) kẻ tiếp tuyến với nửa đường tròn cắt tia Ax , By theo thứ tự C và D
a/C/m tam giác COD vuông tại O
b/Clm AC.BD = \(R^2\)
Cho nửa đường tròn tâm O đường kính AB . Trên cùng nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax , By. Lấy điểm M bất kì thuộc nửa đường tròn ( M khác A và B ) . Kẻ MH vuông góc với AB tại H .
a, Tính MH biết AH = 3cm , HB = 5cm
b, Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax , By lần lượt tại C và D . Gọi I là giao điểm của AD và BC . Chứng minh M,I,H thẳng hàng
c, Vẽ đường tròn tâm O" nội tiếp tam giác AMB tiếp xúc AB ở K. Chứng minh rằng diện tích S tam giác AMB = AK . KB