a: Xét (O) có
CM,CA là tiếp tuyến
=>CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
=>ΔCOD vuông tại O
b: AC*BD=CM*DM=OM^2=R^2
a: Xét (O) có
CM,CA là tiếp tuyến
=>CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
=>ΔCOD vuông tại O
b: AC*BD=CM*DM=OM^2=R^2
cho nửa đường tròn tâm O đường kính AB. Lấy điểm C thuộc nửa đường tròn và điểm D nằm trên đoạn OA. Vẽ các tiếp tuyến Ax, By của nửa đường tròn. Đường thẳng qua C, vuông góc với CD cắt tiếp tuyến Ax, By lần lượt tại M và N
a, CM các tứ giác ADCM và BDCN nội tiếp đường tròn
b, CMR \(\widehat{MDN}=90^o\)
c, Gọi P là giao điểm của AC và DM, Q là giao điểm của BC và DN. CMR PQ // AB
ghi giả thiết và kết luận
Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F.
1. Chứng minh: góc EOF = 90o
2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng.
3. Gọi K là giao điểm của AF và BE, chứng minh MK vuông góc AB.
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.Từ điểm P trên Ax kẻ tiếp tuyến thứ hai PC với nửa đường tròn (C là tiếp điểm).AC cắt OP tại K; PB cắt nửa đường tròn (O) tại D (D khác B).
a.Chứng minh APDK la tứ giác nội tiếp đường tròn
b.Chứng minh góc ADK = góc ACO
Cho nửa đường tròn tâm O đường kính AB. Lấy điểm M thuộc đoạn thẳng OA, điểm N thuộc nửa đường tròn (O). Từ A và B vẽ các tiếp tuyến Ax và By. Đường thẳng qua N và vuông góc với NM cắt Ax, By thứ tự tại C và D.
a) Chứng minh ACNM và BDNM là các tứ giác nội tiếp đường tròn.
b) Chứng minh ∆ANB đồng dạng với ∆CMD.
Cho nửa đường tròn (O;R) đường kính AB cố định .Qua A và B vẽ các tiếp tuyến Ax và By với nữa đường tròn (O). Từ một điểm M tuỳ ý trên nữa đường tròn (M khác A và B) vẽ tiếp tuyến thứ ba với nữa đường tròn cắt các tiếp tuyến Ax và By lần lượt tại H và K a) Chứng minh tứ giác AHMO nội tiếp b) Chứng minh AH + BK =HK c) Chứng minh HO.MB = 2R² d) Xác định vị trí của điểm M trên nữa đường tròn sao cho tứ giác AHKB có chu vi nhỏ nhất
Cho nửa đường tròn tâm O đường kính AB = 2R. Vẽ tia tiếp tuyến Ax. Từ điểm M trên Ax kẻ MC (C nằm trên nữa đường tròn và khác A) sao cho MA bằng MC. Nối M với O; MB cắt nửa đường tròn (O) tại D.
a. Chứng minh: AMCO là tứ giác nội tiếp đường tròn. Xác định tâm I của đường tròn.
b. Chứng minh: MC là tiếp tuyến; MC2 = MD.MB.
cho nửa đường tròn tâm O đường kính AB từ a,b kẻ 2 tiếp tuyến Ax và By qua điểm M thuộc nửa đường tròn tâm O kẻ tiếp tuyến thứ 3 cắt tiếp tuyến Ax và By lần lượt ở E và F
a) CM: AEMO nội tiếp
b) AM cắt OE ở P , BM cắt OF ở Q chứng minh MPOQ là HCN
cho nửa đường tròn tâm (O) đường kính AB. lấy diểm M thuộc đoạn thẳng OA, điểmN thuộc nửa đường tròn (O). từ A và B vẽ các tiếp tuyến Ax,By. đường thẳng qua N và vuông góc với MN cắc Ax, By thứ tự tại C và D.
a) chứng minh ACNM và BDNM là các tứ giác nội tiếp đường tròn
b) chứng minh tam giác ANB đồng dạng với tam giác CMB
C) gọi I là giao điểm của AN và CM , K là giao điểm của BN và DM . chưng minh IK song song AB