N=\(\sqrt{3+2\sqrt{2}}\)+\(\sqrt{6-4\sqrt{2}}\)
=\(\sqrt{1+2\sqrt{2}+2}\)+\(\sqrt{4-2.2\sqrt{2}+2}\)
=\(\sqrt{\left(1+\sqrt{2}\right)^2}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)
=1+\(\sqrt{2}\)+2-\(\sqrt{2}\)=3
N=\(\sqrt{3+2\sqrt{2}}\)+\(\sqrt{6-4\sqrt{2}}\)
=\(\sqrt{1+2\sqrt{2}+2}\)+\(\sqrt{4-2.2\sqrt{2}+2}\)
=\(\sqrt{\left(1+\sqrt{2}\right)^2}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)
=1+\(\sqrt{2}\)+2-\(\sqrt{2}\)=3
Chứng minh rằng N \(\sqrt{2}+\sqrt{3}\) không là số hữu tỉ.
Chứng minh rằng : \(\sqrt{2}+\sqrt{3}\) không là số hữu tỉ.
Tính
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
b) \(\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
bài 1 : với giá trị nào của x thì căn thức sau có nghĩa
\(\sqrt{\dfrac{-3}{4-x^2}}\)
bài 2 : rút gọn biểu thức
a, \(\sqrt{\left(a-3\right)^2}+\sqrt{a^2}+2|a|\) với a>0
b, \(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\dfrac{a\sqrt{b}+b\sqrt{2}}{\sqrt{a}+\sqrt{b}}\)
ĐỀ BÀI:
CÂU 1: cho tam giác ABC. a) tìm điểm I thỏa mãn \(\overrightarrow{IA}+\overrightarrow{2IB}+\overrightarrow{3IC}=\overrightarrow{0}\)
b) tìm tập hợp điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{2MB}+\overrightarrow{3MC}\right|=6\)
c) tìm điểm N trên đường thẳng AC sao cho \(\left|\overrightarrow{NA}+\overrightarrow{2NB}+\overrightarrow{3NC}\right|\) là nhỏ nhất
CÂU 2: cho lục giác đều ABCDEF tâm O. các vecto đối của vecto \(\overrightarrow{OD}\) là những vecto nào?
CÂU 3: giải phương trình sau:
a) \(\sqrt{2x+2}-\sqrt{2x-1}=x\)
b) \(\left(x-3\right)\sqrt{x^2+m}=x^2-9\) (m là tham số)
c) \(\frac{x^2-4}{\sqrt{x^2-m}+1}=0\) (m là tham số)
d) \(\sqrt{x+3}-\sqrt{7-x}=\sqrt{2x-8}\)
e) \(\sqrt{x+1}+\sqrt{1-x}=2-\frac{x^2}{4}\)
\(\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}\)
Câu 1: Tính
a)\(\sqrt{0,125}\)
b)\(\sqrt{\frac{10.4,9}{16}}\)
c)\(\sqrt{\frac{\sqrt{128}}{\sqrt{18}}}\)
Câu 2: Trục căn ở mẫu
\(\frac{3}{2\sqrt{3}}\)
Câu 3: Rút gọn
a) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
b) \(2\sqrt{89}-3\sqrt{18}+\frac{1}{2}\sqrt{32}\)
c)\(2\sqrt{5}+\sqrt{45}-\sqrt{20}+\frac{\sqrt{55}}{\sqrt{11}}\)
d)\(6\sqrt{\frac{1}{3}}-\frac{9}{3}-\frac{2}{\sqrt{3}-1}\)
Câu 4: Giải phương trình
\(\sqrt{9x+18}-5\sqrt{x+2}+\frac{4}{5}\sqrt{25x+50}=60\)
\(M=\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
với \(a>0;a\ne1\)
giá trị nào của a để N=\(\frac{6}{M}\in Z\)
Rút gọn các biểu thức sau:
* A = \(\dfrac{x+4\sqrt{x}-2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}}.\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
* B = \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)