a: \(A=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)
\(=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n-1\right)\) là tích của bốn số nguyên tiếp
nên A chia hết cho 24
b: \(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)(1)
Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(2\right)\)
Từ (1) và (2) suy ra A chia hết cho 30
c: Vì 7 là số nguyên tố
nên \(n^7-n⋮7\)