cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK
Cho Δ ABC nội tiếp đường tròn (O) , kẻ các đường cao BD và CE của Δ ABC chúng cắt nhau tại H và cắt đường tròn lần lượt tại I và K a) CM ; tứ giác ADHE , BCDE nội tiếp b) CM : AI = AK c) Đường thẳng DE cắt đường tròn (O) tại hai điểm M , N . CM : AM = AN
cho tam giác ABC nhọn nội tiếp đường tròn (O). Hai đường cao AM ,BN cắt nhau tại H và cắt đường tròn (O) lần lượt tại D,E. chứng minh rằng
a. tứ giác HMCN nội tiếp đường tròn
b. CD=CE
c. tam giác BHD cân
cho tam giác ABC nhọn nội tiếp (o). Hai đường cao AM và BN cắt nhau tại H và cắt đường tròn (o) lần lượt tại D và E
CMR: a) tứ giác HMCN nội tiếp đường tròn
b) CD=CE
c)tam giác BHD cân
Cho ∆ABC nội tiếp đường tròn (O) có các đường cao CE, CF cắt nhau tại H. a, CM: Tứ giác AEHF nội tiếp. CM: Tứ giác BECF nội tiếp. b, Kẻ đường kính AK cắt EF tại I . CM: Tứ giác ICFK nội tiếp.
cho tam giác nhọn ABC nôi tiếp đường tròn tâm O, các đường cao AM,BN,CP căt nhau tại H. a. cm tứ giác ANHP nội tiếp b. kẻ đường kính AD của đường tròn O. Cm góc BAM= góc CAD c. cm AD vuông góc NP d. Gọi R là bán kính đường tròn ngoại tiếp tứ giác BCNP . Cm BH.BN+CH.CP=4R^2 e. Gợi I là trung điểm B. CM AH=1OI
Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O). BD , CE cắt nhau tại H. Đường thẳng BD cắt ( O ) tại M. đường thẳng CE cắt ( O ) tại N.a) Chứng minh AE.AB = AD.AC b ) Chứng minh tứ giác BEDC nội tiếp . c ) Chứng minh MN // DE . c ) Chứng minh OA vuông góc ED
Câu III ( 3 điểm). Cho tam giác ABC nhọn nội tiếp đường tròn (O). Tiếp tuyến qua B,C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E,F
1) Chứng minh rằng hai tam giác OEF và ABC đồng dạng
2) Gọi J là tâm đường tròn ngoại tiếp tam giác OEF. Chứng minh rằng: OJ//BC
3) Gọi K là trực tâm tam giác OEF. CMR: AT chia đôi đoạn thẳng OK