Bài 3: CMR: a) (n +3)^2 – (n -1)^2 chia hết cho 8 (với n Î Z )
b) n^5 – 5n^3 + 4n chia hết cho 120 (với n thuộcZ )
Cho n thuộc Z. CMR:
(5n+2)2-4n2 chia hết cho 5
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
CMR :
a) vn thuộc z thì n ( n+5)- ( n -3 ) ( n+2) chia hết cho 6
b ) ( n-1 )(n+1)-(n-7)(n-5) chia hết cho 4 và 3
giúp mk nha
mk đang cần gấp
1)Chứng minh : (( 2-n ).( n^2 - 3n +1) + n.(n^2 +12)+8 ) chia hết cho 5 ( vs mọi n thuộc Z)
2) Cho x - y = 7 . Tính GTBT: A= x^2 - 2xy +2y^2 -5x +5y +6
3) Cho a +b +c +d = 10. CMR: a^3 + b^3 + c^3 + d^3 = 3. (ab - cd).( c +d)
4) Cho x^2 + y^2 + z^2 = xy + xz + zy. CMR: x = y = z
5) Cho a^3 + b^3 + c^3 = 3abc. CMR: a + b + c = 0 hoặc a = b = c
6) Xác định p , q để x^3 + px +q chia hết cho x^2 - 2x -3
Giúp mk vs !!!! >.<
Chứng minh rằng:
a) (5n - 2)2 - (2n - 5)2 luôn chia hết cho 21 với n thuộc Z
b) Hiệu các bình phương của hai số lẻ liên tiếp chia cho 8
a) CMR:\(5x^3+15n^2+10n\)
Luôn chia hết cho 30 với mọi n thuộc Z
b) CMR: \(n^3\left(n^2-7\right)-36n\)
Chia hết cho 105 với mọi x thuộc Z
Cho n thuộc Z, CMR: n(n+1)(2n+5)-n(n+1)(n+3) chia hết cho 6