Giả sử giữa n và 3n không tồn tại một lập phương đúng nào
\(\Leftrightarrow k^3\le n< 3n\le\left(k+1\right)^3\)
\(\Rightarrow\left(k+1\right)^3>3k^3\)
\(\Leftrightarrow k+1>k\sqrt[3]{3}\)
\(\Leftrightarrow k< \frac{1}{\sqrt[3]{3}-1}\)
\(\Rightarrow3n\le\left(\frac{1}{\sqrt[3]{3}-1}+1\right)^3< 36\)
\(\Rightarrow n< 12\Rightarrow\left[{}\begin{matrix}n=10\\n=11\end{matrix}\right.\)
Nhưng với \(n=10\) thì giữa 10 và 30 có 27 (ktm)
\(n=11\) tương tự
Vậy điều giả sử là sai