Vì BC là đường kính của (O) nên BC là cung lớn nhất
hay BC>MC
Vì BC là đường kính của (O) nên BC là cung lớn nhất
hay BC>MC
Trên đường tròn (O) dựng dây BC không đi qua tâm. Trên tia đối của tia BC. Lấy điểm M. Đường thẳng đi qua M cắt đường tròn (O) lần lượt tại N và P, sao cho O nằm trong góc PMC. Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP. Nối AB và AC lần lượt cắt NP ở D và E. Chứng minh rằng:
a) Góc ADE= Góc ACB.
b) Tứ giác BDEC nội tiếp.
c) MB.MC=MN.NP.
d) Nối OK cắt NP tại K. Chứng minh MK2>MB.MC
giải chi tiết giúp mk vs! mk đang cần gấp
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, D cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, D cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, E cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2
Cho nửa đường tròn (O;R),đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn OC lấy điểm E (E khác O,C). Tia AE cắt đường tròn (O) tại M. Tiếp tuyến tại M của đường tròn (O) cắt OC ở D. Gọi K là giao điểm của BM và OC
a) Chứng minh tứ giác OBME nội tiếp 1 đường tròn.
b) Chứng minh tam giác MDE cân và BM.BK không phụ thuộc vào vị trí của điểm E.
c)Tìm vị trí của điểm E để MB=1/2MA
Cho tam giác ABC nội tiếp đường tròn tâm O, gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M chứng minh
a) ba điểm AED thẳng hàng
b) chứng minh tứ giác BECD nội tiếp
c) Tìm 2 cặp tam giác đồng dạng
Help!! mời các cao nhân vào giúp
từ điểm A ở ngoài ường tròn (o) vẽ hai tiếp tuyến AB,AC đến (O). Gọi E là giao điểm của OA và BC. Gọi I là Trung điểm của BE. đường thẳng qua I và vuông góc với oi cắt tia ab, ac theo thứ tự D,F.
a) ΔODF cân tại O
b)F là trung điểm của AC
Từ điểm A nằm ngoài đường tròn (O; R) thỏa mãn OA = 3R, kẻ hai tiếp tuyến AM, AN với đường tròn, M và N là hai tiếp điểm. Qua E thuộc cung nhỏ MN, kẻ tiếp tuyến thứ ba với đường tròn (O) cắt AM, AN lần lượt tại H và K. Tính chu vi tam giác AHK theo R. (gợi ý: Tính độ dài AM, AN theo R)
Cho đường tròn (O; R). Một đường thẳng d cắt đường tròn (O) tại hai điểm C và D. Từ một điểm I thuộc đường thẳng d, ở ngoài đường tròn (O) sao cho ID > IC, kẻ hai tiếp tuyến IA và IB tới đường tròn (O). Gọi H là trung điểm của CD.
1. Chứng minh năm điểm A, H, O, B, I cùng thuộc một đường tròn.
2. Giả sử AI = AO, khi đó tứ giác AOBI là hình gì? Tính diện tích hình tròn ngoại tiếp tứ giác AOBI?
3. Chứng minh rằng khi I di chuyển trên đường thẳng d thỏa mãn: Ở ngoài (O) và ID > IC thì AB luôn đi qua một điểm cố định.