Từ điểm A nằm ngoài đường tròn (O) vẽ 2 tiếp tuyến AM, AN. Qua A kẻ đường thẳng vuông góc với AM cắt ON tại S. Kẻ OE vuông góc SA tại E. Tia EN cắt đường tròn (O) tại điểm thứ 2 là B. Gọi I là giao điểm của MN và OA, H là giao điểm của OE và AN. Chứng minh: a. SA = SO b. SH vuông góc OA c. BN song song OA
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.cho đường tròn (O;R) , đường kính AB . kẻ tiếp tuyến Ax với đường tròn . trên tia Ax lấy điểm K(AK>R) . Qua k kẻ tiếp tuyến KM tới đường tròn (O). đường thẳng d vuông góc với AB tại O, d cắt MB tại E.
1.chứng minh KAOM là tứ giác nội tiếp
2. OK cắt AM tại I , chứng minh OI.OK=R^2
3 . gọi H là trực tâm tam giác KMA . tìm quỹ tích điểm H khi K chuyển động trên tia Ax
cho đường tròn (o;r) và một điểm a nằm ngoài đường tròn vẽ 2 tiếp tuyến ab, ac. oa cắt bc tại h, kẻ dây cd//ab. nối ad cắt (o) tại điểm thứ hai là e, ce cắt ab tại i. cm tứ giác ehod nội tiếp
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A kể tiếp tuyến AM, AN tới đường tròn (O) (M, N là các tiếp điểm)
a) Chứng minh rằng tứ giác AMON nối tiếp.
b) Vẽ cát tuyến ABC tới đường tròn (O) ( Tia AO nằm giữa AM và AC ). Chứng minh rằng: AM\(^2\)= AB. AC
c) Gọi H là giao điểm của AO và MN. Chứng minh tứ giác BHOC nội tiếp.
d) Chứng minh rằng HN là tia phân giác của BHC.
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A kể tiếp tuyến AM, AN tới đường tròn (O) (M, N là các tiếp điểm)
a) Chứng minh rằng tứ giác AMON nối tiếp.
b) Vẽ cát tuyến ABC tới đường tròn (O) ( Tia AO nằm giữa AM và AC ). Chứng minh rằng: AM2= AB. AC
c) Gọi H là giao điểm của AO và MN. Chứng minh tứ giác BHOC nội tiếp.
d) Chứng minh rằng HN là tia phân giác của góc BHC.
Cho nửa đường tròn (O, R) đường kính AB cố định. Qua Avà B vẽ các tiếp tuyến với nửa đường tròn (O).Từ một điểm M tùy ý trên nửa đường tròn (M khác A và B) vẽ tiếp tuyến thứ ba với nửa đường tròn cắt các tiếp tuyến tại A và B theo thứ tự tương ứng là H và K
Chứng minh 4 điểm A,H,M,O cùng nằm trên một đường tròn.
a) Chứng minh AH + BK = HK, b)Tính số đo góc HOK
c)Chứng minh tam giác HAO đồng dạng tam giác AMB và HO.MB = 2R2
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R).Các tiếp tuyến tại B và C với đường tròn cắt nhau tại N.Qua A kẻ đường thẳng // với BC, cắt đường tròn tại điểm thứ hai là M.Đoạn thẳng NM cắt đường tròn tại điểm thứ 2 là K
1)CM:\(NB^2\)=NK.NM
2) đoạn thẳng NO cắt đường tròn (O) tại I.Chứng minh I là tâm đường tròn nội tiếp tam giác NBC
ai giúp mình với ạ
Bài 1: Cho đường tròn (O;R) và điểm M nằm ngoài đtròn đó. Kẻ hai tiếp tuyến MA, MB với đtròn đó (A,B là các tiếp điểm) , MO cắt cung nhỏ AB tại N.
a) tính góc AON và số đo cung ANB, biết OM=2R
b) Biết góc AMB=36 độ . Tính số đo góc AOB