\(d\left(M;\Delta\right)=\dfrac{\left|3.2+4.5-m\right|}{\sqrt{3^2+4^2}}=1\)
\(\Leftrightarrow\left|26-m\right|=5\Rightarrow\left[{}\begin{matrix}m=21\\m=31\end{matrix}\right.\)
\(d\left(M;\Delta\right)=\dfrac{\left|3.2+4.5-m\right|}{\sqrt{3^2+4^2}}=1\)
\(\Leftrightarrow\left|26-m\right|=5\Rightarrow\left[{}\begin{matrix}m=21\\m=31\end{matrix}\right.\)
Cho đường thẳng delta m : (m-2)x+(m+1)y-5m+1=0 với m là tham số và điểm A(-3;9) . Giả sử m=\(\dfrac{a}{b}\) để khoảng cách từ A đến đường thẳng delta m là lớn nhất . Khi đó , tính S=2a-b
Bài 6: Cho đường thẳng d : 6x – 5y + 1 = 0 và \(\Delta\) : x + 2y – 5 = 0
a) Tính khoảng cách từ M(3; -2) tới hai đường thẳng trên.
b) Tìm N thuộc d : x – 2y = 0 sao cho khoảng cách từ N tới d bằng 2 lần khoảng cách từ N tới \(\Delta\)
Cho 2 điểm P(6;1) và Q(-3;-2) và đường thẳng delta : 2x-y-1=0 . Toạ độ điểm M thuộc delta sao cho MP+MQ nhỏ nhất
Khoảng cách giữa 2 đường thẳng delta 1 : 5x-7y+4=0 và delta 2 : 5x-7y+6=0
Trong mặt phẳng 0xy cho điểm A(1;2) , B ( 3 ; -4) ; N ( -2;1) . Gọi M là trung điểm của AB
a/ Viết phương trình oổng qyuast của đường thẳng AB b/ Viết phương trình tham số của đường thẳng đi qua N và song song với AD . Tính khoảng cách từ điểmN (-2;1) eến đường thẳng AB
c/Viết phương trình tổng quát của đường tăẳng d đi qua M và vuông góc với đường thẳng Delta : 3x+y-5=0
d/Viết phương trình đường thẳng đi qua A và cách B một khoảng lớn nhất
Khoảng cách giữa hai đường thẳng song song d1:6x-8y-101=0 và d2:3x-4y=0 bằng
Trong mặt phẳng 0xy , cho 3 đường thẳng d1 : x+2y+1=0 ; d2 : x+y-5=0 và d3 : 2x+3y-10=0 . Phương trình đường thẳng delta đi qua giao điểm của d1d2 và song song với d3 là
Cho tam giác ABC có trực tâm \(H\left(0;\frac{23}{3}\right)\) và phương trình đường thẳng AB: 3x-y-1=0, phương trình cạnh AC: 3x+4y-96=0. Viết phương trình cạnh BC
Trong mặt phẳng 0xy , cho đường thẳng d : x-2y+1=0 và điểm M(2;-2) . Toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d là