Cho P=\(\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}\) với a ∈ Z. Chứng minh P là một số tự nhiên.
Cho đa thức \(f\left(x\right)=x^2+mx+n\) với \(m,n\in Z\). Chứng minh rằng tồn tại số nguyên k để \(f\left(k\right)=f\left(2021\right).f\left(2022\right)\)
1.Cho ba số dương a+b+c=1.Chứng minh rằng:
\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
2.Cho x,y,z là các số thực dương và thỏa mãn xy+yz+zx=xyz.Chứng minh rằng:
\(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3+\left(1+y\right)\left(1+z\right)}+\frac{zx}{y^2+\left(1+z\right)\left(1+x\right)}\)\(\ge\)\(\frac{1}{16}\)
3.Cho hai số thực dương a,b và thỏa mãn 2a +3b \(\le4\).Tìm giá trị nhỏ nhất của biểu thức:
Q=\(\frac{2002}{a}+\frac{2017}{b}+2996a-5501b\)
4.Gỉai phương trình : \(\left(x^2-4\right)^3=\left(\sqrt[3]{\left(x^2+4\right)^2}+4\right)^2\)
Với mọi a, b, c, x, y, z \(\in\) R, chứng minh : \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)
1 . Cho \(a,b,c\ne0\in Q\) và \(a=b+c\)
CMR : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\in Q\)
2 . Cho ba số dương x,y,z thõa mãn điều kiện xy+yz+zx=1 tính:
\(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x\right)^2\left(1+y^2\right)}{1+z^2}}\)
3 .
Từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.
a) Chứng minh các hệ thức: MA2 = MB.MC; MA2 = MH.MO.
b) Chứng minh ∆MBH đồng dạng ∆MOC. Từ đó chứng minh tứ giác BCOH nội tiếp đường tròn.
c) Chứng minh . Vẽ tiếp tuyến IK tới đường tròn (O) với K là tiếp điểm. và ∆MKH vuông tại K.
d) Giả sử BC = 3BM và D là trung điểm đoạn MC. Chứng minh: MC tiếp xúc với đường tròn ngoại tiếp ∆ODH
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Câu 1: Giải phương trình :
\(\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2-9x+2}\right)=7\)
Câu 2: Tìm \(x;y\in Z\) biết \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Câu 3: Cho \(a,b,c\) là các số hữu tỉ thỏa mãn \(\frac{1}{a+bc}+\frac{1}{b+ca}=\frac{1}{a+b}\). Chứng minh \(\frac{c-3}{c+1}\) là bình phương của một số hữu tỉ
Câu 4: Cho 3 số \(a,b,c\) thỏa mãn \(0\le a\le b\le c\le1\).
Tìm \(maxB=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
1) Cho a, b, c > 0. CMR: \(a^2+b^2+c^2+abc+5\ge3\left(a+b+c\right)\)
2) Cho a, b, c > 0, đặt \(x=a+\frac{1}{b}\), \(y=b+\frac{1}{c}\), \(z=c+\frac{1}{a}\). Chứng minh rằng: \(xy+yz+zx\ge2\left(x+y+z\right)\)
3) Cho các số dương x, y, z thỏa mãn xyz = 1. Chứng minh rằng: \(x^2+y^2+z^2+x+y+z\ge2\left(xy+yz+zx\right)\)
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho \(c>0\) và \(a,b\ge c\). Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)