\(\Delta'=m^2-\left(m+4\right)\left(m+1\right)^2\ge0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{\left(m+1\right)^2}\left(1\right)\\x_1x_2=\dfrac{m+4}{\left(m+1\right)^2}\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)^2=\dfrac{2m}{x_1+x_2}\\\left(m+1\right)^2=\dfrac{m+4}{x_1x_2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2m}{x_1+x_2}=\dfrac{m+4}{x_1x_2}\Leftrightarrow2mx_1x_2=\left(m+4\right)\left(x_1+x_2\right)\)
\(\Leftrightarrow2mx_1x_2=m\left(x_1+x_2\right)+4\left(x_1+x_2\right)\)
\(\Leftrightarrow m\left(2x_1x_2-x_1-x_2\right)=4\left(x_1+x_2\right)\)
\(\Leftrightarrow m=\dfrac{4\left(x_1+x_2\right)}{2x_1x_2-x_1-x_2}\) (3)
Thay m từ (3) vào (1) (hoặc (2) đều được) ta có:
\(x_1+x_2=\dfrac{\dfrac{8\left(x_1+x_2\right)}{2x_1x_2-x_1-x_2}}{\left(\dfrac{4\left(x_1+x_2\right)}{2x_1x_2-x_1-x_1}+1\right)^2}\)
\(\Leftrightarrow\left(\dfrac{3\left(x_1+x_2\right)+2x_1x_2}{2x_1x_2-x_1-x_2}\right)^2=\dfrac{8}{2x_1x_2-x_1-x_2}\)
\(\Leftrightarrow\left(3x_1+3x_2+2x_1x_2\right)^2=8\left(2x_1x_2-x_1-x_2\right)\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m
2/ Gọi pt cần tìm có 2 nghiệm \(\left\{{}\begin{matrix}x_3=\dfrac{x_1}{x_2}\\x_4=\dfrac{x_2}{x_1}\end{matrix}\right.\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\\x_3x_4=\dfrac{x_1}{x_2}.\dfrac{x_2}{x_1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{\left(x_1+x_2\right)^2}{x_1x_2}-2=\dfrac{4m^2}{\left(m+1\right)^2\left(m+4\right)}-2\\x_3x_4=1\end{matrix}\right.\)
Theo Viet đảo, \(x_3;x_4\) là nghiệm của pt:
\(x^2-\left(\dfrac{4m^2}{\left(m+1\right)^2\left(m+4\right)}-2\right)x+1=0\)
Nếu thích bạn có thể biến đổi và rút gọn cái đống trong ngoặc kia cho gọn hơn :D