\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
<=> \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
<=> \(2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=0\)
<=> \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=0\)
<=>\(\dfrac{a+b+c}{abc}=0\)
=> a+b+c =0
=> a3+b3+c3=3abc ⋮3 (bn tự cm)
=> a3+b3+c3 ⋮3 (đpcm)