Lời giải:
\(\frac{3x^3f(x)}{f'(x)^2+xf'(x)+x^2}=f'(x)-x\)
\(\Rightarrow 3x^3f(x)=[f'(x)-x][f'(x)^2+xf'(x)+x^2]=f'(x)^3-x^3\)
\(\Rightarrow 3f(x)=\left(\frac{f'(x)}{x}\right)^3-1\)
Đặt \(\frac{f'(x)}{x}=g(x)\Rightarrow f'(x)=xg(x)(1)\) .
Vì \(f(1)=\frac{7}{3}\Rightarrow f'(1)=2\Rightarrow g(1)=2\)
Ta có: \(3f(x)=g(x)^3-1\)
\(\Rightarrow 3f'(x)=3g'(x)g(x)^2\)
\(\Rightarrow f'(x)=g'(x)g(x)^2(2)\)
Từ \((1);(2)\Rightarrow xg(x)=g'(x)g(x)^2\)
\(\Rightarrow x=g'(x)g(x)=\frac{1}{2}[g(x)^2]'\) \(\Rightarrow 2x=[g(x)^2]'\Rightarrow g(x)^2=\int 2xdx=x^2+c\)
Kết hợp với $g(1)=2$ suy ra $c=3$
Vậy \(g(x)^2=x^2+3\Rightarrow f(x)=\frac{g(x)^3-1}{3}=\frac{(x^2+3)^{\frac{3}{2}}-1}{3}\)
\(\Rightarrow f(2)=\frac{\sqrt{343}-1}{3}\)