Tứ giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Brian Andrew

Cho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng FG và GH theo thứ tự ở M và N còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q

a) CM các tam giác EMQ và ENP là các tam giác vuông cân

b) Đường thẳng QM cắt NP tại R. Gọi I và K theo thứ tự là trung điểm của PN và QM. Tứ giác EKRI là hình gì? Tại sao?

c) CM F, H, K, I thẳng hàng

Nguyễn Thành Trương
27 tháng 1 2020 lúc 11:31

\(a)\Delta EMF=\Delta EQH\left(g.g\right)\Rightarrow EM=EQ\)

Vậy $\Delta MEQ$ vuông cân tại $E$

Tương tự $\Delta ENP$ vuông cân tại $E$

$b$ $M$ là trực tâm của $\Delta PNQ$ nên \(QR\perp PN\Rightarrow\widehat{IRK}=90^o\)

Vậy tứ giác $EKRI$ là hình chữ nhật.

$c)$ Tứ giác $EFGH$ là hình vuông nên $F$ và $H$ thuộc đường trung trực $EG(1)$

Mặt khác $IE=IG=\dfrac{1}{2}NP$, suy ra $I$ thuộc đường trung trực $EG(2)$

$KE=KG=\dfrac{1}{2}MQ$, suy ra $K$ thuộc đường trung trực $EG (3)$

Từ $(1),(2)$ và $(3)$ suy ra $I,F,K,H$ thẳng hàng

Khách vãng lai đã xóa
Nguyễn Thành Trương
27 tháng 1 2020 lúc 11:24
Hình minh họa.

Hỏi đáp Toán

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nam
Xem chi tiết
night Moon
Xem chi tiết
Hương
Xem chi tiết
Hương
Xem chi tiết
Cộng sản MEME
Xem chi tiết
Giúp mik với mấy bn ơi C...
Xem chi tiết
người học sinh giỏi:))
Xem chi tiết
Vân Anh Lê
Xem chi tiết
Lê Trần Trọng Tín
Xem chi tiết