Bài 1 : Cho hình vuông ABCD. Trên tia đối BA lấy E, trên tia đối CB lấy điểm F sao cho AE = CF
a/ C/M : tam giác EDF vuông cân
b/ Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm của EF. Chứng minh O, C, I thẳng hàng
Bài 2 : Cho tam giác ABC vuông cân tại A. Các điểm D, E theo thứ tự di chuyển trên AB, AC sao cho DB = AE. Xác định vị trí điểm D, E sao cho:
a/ DE có độ dài nhỏ nhất
b/ Tứ giác BDEC có diện tích nhỏ nhất
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho hình vuông ABCD cạnh a. Gọi I là trung điểm của AB. Gọi M là điểm đối xứng của D qua C. Gọi P là điểm đối xứng của M qua D. Trên tia DA lấy điểm Q sao cho ΔPDQ ∼ ΔIAD. Trên tia BC lấy điểm N sao cho ΔMCN ∼ ΔIAD.
a) Tứ giác MNPQ là hình gì?
b) Đường thẳng DI cắt PN tại E, cắt QM tại F.
Chứng minh: EF = \(\dfrac{MN+PQ}{2}\)
c) Chứng minh AQPN là hình bình hành.
d) Gọi S là giao điểm của PN và QM. Gọi T là giao điểm của QI và DC, R là trung điểm của PQ. Chứng minh: S, T, R thẳng hàng.
Cho ΔABC vuông ở A. Điểm H là trung điểm của BC.Kẻ HD⊥AB và HE⊥AC (D ϵ AB, E ϵ AC)
a)Chứng minh tứ giác AEHD là hình chữ nhật.
b)Tính SAEHD biết AE=3cm, AH =5cm
c)Gọi P là điểm đối xứng của H qua AB. Chứng minh AH//BP
d)Trên tia đối của EH lấy Q sao cho QE=EH. Chứng minh A là trung điểm của đoạn thẳng PQ
Cho hình chữ nhật ABCD (AB < BC) có O là giao điểm của hai đường chéo. Trên tia đối của tia CD lấy
điểm E sao cho CE = CD. Gọi F là hình chiếu của của D trên BE ; I là giao điểm của AB và CF ; K là giao điểm
của AF và BC. Chứng minh rằng ba điểm O, K, I thẳng hàng
Cho tam giác ABC vuông tại A; có AB<AC.M là trung điểm BC.Gọi D là điểm đối xứng với A qua M,E là điểm đối xứng với A qua đường thẳng BC.
a)Chứng minh AC=BD
b)Tứ giác BCDE là hình gì?
c)Gọi H là giao điểm AE và BC.Vẽ tia Ax song song Hd và cắt BC tại I.Chứng minh DI=EH
Câu 3: (0,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH và đường phân giác BD a) Chứng minh đẳng thức AD ×BC- AB ×DC b) Ching minh 🔺ABC-🔺HBA D) Vẽ đường trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME=5cm, trên tia đối của tia BA lấy điểm F sao cho BF =6cm. Chứng minh BC//EF (Biết AB = 12cm, AC = 16cm) Giúp mik với ( cần gấp ạ)
Cho tam giác ABCD vuông ở A, trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho MD=MA.
a) Chứng minh tứ giác ABCD là hình chữ nhật.
b) Trên tia đối của tia AB lấy điểm F sao cho AF=AC; trên tia đối của tia AC lấy điểm E sao cho AE=AB. Chứng minh DA vuông góc với EF.
Mình cần bài này rất gấp, mong m.n trả lời hộ mik. Xin cảm ơn! ^^