Cho hình vuông ABCD trên tia đối của tia BAlấy điểm E trên tia đối của tia CB lấy điểm F sao cho a EA =CF chứng minh tam giác ADF vuông cân gọi I là trung điểm EF chứng minh BI=DI gọi o là giao điểm của hai đường chéo ac và BD chứng minh O,C,Y thẳng ngang
Cho hình vuông ABCD ; trên tia đối tia BA lấy E, trên tia đối tia CB lấy F sao cho AC =CF
a) Chứng minh tam giác EDF vuông cân
b) Gọi O là giao điểm của 2 đường chéo AC và BD . Gọi I là trung điểm EF. Chứng minh O,C,I thẳng hàng.
Cho hình vuông ABCD.trên tia đối BA lấy một điểm E .trên tia đối của CB lấy một điểmF sao cho EA= FC
A.Chứng minh rằng tam giác FED vuông cân
B.Gọi O là giao điểm của hai đường chéo AC và BD Gọi I là trung điểm của FE .chứng minh rằng O,C,I thẳng hàng
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.