trong mặt phẳng tọa độ oxy, cho hình vuông abcd có cạnh bằng 2. gọi m,n lần lượt là trung điểm của đoạn thẳng ab và c. trên đoạn mn lấy điểm h sao cho hm=3hn. lấy điểm i thuộc dường thẳng cd sao cho bi vuông góc với ah. biết c(1;1), d(5;3). tìm tọa độ điểm i
Trong mặt phẳng Oxy cho tam giác ABC, biết đỉnh A(1; 1) và tọa đọ trọng tâm G (1; 2). Cạnh AC và đường trung trục của nó lần lượt có phương trình là \(x+y-2=0\) và \(-x+y-2=0\). Các điểm M và N lần lượt là trung điểm của BC và AC
a) Hãy tìm tọa độ các điểm M và N
b) Viết phương trình hai đường thẳng chứa hai cạnh AB và BC
Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) \(x^2+y^2-2x-4=0\) và đường thẳng (d): \(x-y+1=0\)
1) Viết pt đường thẳng (d1) vuông góc với (d) và tiếp xúc với (C)
2) Viết pt đương thẳng (Δ) song song với (d) và cắt (C) tại 2 điểm M, N có MN = 2
3) Tìm trên (d) điểm P biết rằng qua P kẻ được 2 tiếp tuyến PA, PB đến (C) có ΔPAB là tam giác đều. (trong đó A, B là 2 tiếp điểm)
Tìm điều kiện của tham số m để hệ sau đây có nghiệm
\(\left\{{}\begin{matrix}x+\sqrt{x^2+16}\le\dfrac{40}{\sqrt{x^2+16}}\\x\left(x-2\right)\left(\sqrt{x^2+y^2+3}-1\right)+\left(x^3+x+m-2\right)^2=0\end{matrix}\right.\)
Trên hệ trục tọa độ Oxy, cho hình vuông ABCD. Gọi M là 1 điểm thuộc đoạn thẳng CD sao cho \(\overrightarrow{MC}=2.\overrightarrow{DM}\). Gọi N là trung điểm của đoạn thẳng BC và tọa độ của N là: \(N\left(0;2019\right)\).
Gọi K là giao điểm của 2 đường thẳng AM và BD. Biết đường thẳng AM có phương trình là : \(x-10y+2018=0\). Tính khoảng cách từ gốc tọa độ O đến đường thẳng NK ?
P/s: Em xin phép nhờ quý thầy cô và các bạn giúp đỡ bài toán trong đề cương của trường THPT Việt Nam -- Ba Lan ( Thành phố Hà Nội )
Cho tam giác ABC vuông tại A. D là chân đường phân giác trong của góc A. M và N lần lượt là hình chiếu của D lên AB và AC. Đường tròn (C) : x2 + y 2 + 4x - 2y - 4 = 0 ngoại tiếp tam giác DMN
Gọi H là giao điểm của BN và CM, và AH có pt :3x - y + 1 = 0
Tìm tọa độ các điểm A,B,C biết xA\(\in Z\)
Câu 1: Trong mặt phẳng Oxy cho \(M(-1;2),N(3;1)\) và đường thẳng \(d: x-y+1=0\). Tìm điểm P thuộc d sao cho tam giác MNP cân tại N.
Câu 2: Cho \(tanx=-2\).Tính giá trị biểu thức \(A=\frac{sin^2 x +3sin xcos x-cos^2 x +1}{3sin^2 x +4sin x cosx +5cos^2 x -2}\).
Câu 3: Tìm m để hàm số \(y=\sqrt{(m+1)^2-2(m+1)x+4}\) có tập xác định D=R
Câu 4: Cho điểm C(-2;5) và đường thẳng \(\Delta=3x-4y+4=0\). Tìm trên \(\Delta\) hai điểm A,B đối xứng với nhau qua \(I(2;\frac{5}{2})\) và diện tích tam giác ABC bằng 15
Cho đường thẳng Δ : x – y + 2 = 0 và hai điểm O(0; 0), A(2; 0). Tìm điểm M trên Δ sao cho độ dài đường gấp khúc OMA ngắn nhất.
Trong mặt phẳng Oxy cho A(2;2). Tìm toạ độ điểm B trên đường thẳng (d): y = 2 – x và toạ độ điểm C trên đường thẳng (d’): y = 8 – x sao cho tam giác ABC vuông cân tại A