Cho hình chóp S. ABCD có đáy là hình vuông cạnh a, SA = SB = SC = SD = a. Trên cạnh SA lấy M sao cho MS = 2MA. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng qua C, M song song với BD
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SBD đều cạnh a. Gọi M, P là hai điểm lần lượt di động trên cạnh SA, SC (không trùng với S) sao cho SA/SM + SC/ SP = 3, (a) là mặt phẳng di động chứa M, P cắt SB, SD lần lượt tại N, Q. Diện tích tam giác SNQ đạt giá trị nhỏ nhất là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a, tâm O, SA = SB = 4a. Gọi G là trọng tâm tam giác BCD, (α) là mặt phẳng qua G và song song với (SAD). Tính diện tích thiết diện của (α) và hình chóp.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là điểm \(\overrightarrow{SO}=5\overrightarrow{SI}\), (a) là mặt phẳng đi qua AI và cắt SA, SB, SC, SD tại thứ tự M, N, P, Q Tính \(\dfrac{SA}{SM}+\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}\)
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, SAB là tam giác vuông tại A với SA =a. Gọi M là một điểm thay đổi trên cạnh AD, đặt AM=x(0<x<a) .Mp (a) qua M và song song CD và SA
a)Dựng thiết diện của hình chóp với mặt phẳng (a), thiết diện là hình gì? b)Tính diện tích thiết diện theo a và x
Cho hình chóp S.ABCD đáy là hình thang, đáy lớn BC = 2a, AD = a, AB = b. Mặt bên (SAD) là tam giác đều. Mặt phẳng \(\left(\alpha\right)\) qua điểm M trên cạnh AB và song song SA,BC. \(\left(\alpha\right)\) cắt CD,SC,SB lần lượt tại N,P,Q. Đặt AM = x(0<x<b). GTLN của diện tích thiết diện tạo bởi \(\left(\alpha\right)\) và hình chóp S.ABCD là
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB//CD, AB=2CD. Các cạnh bên có độ dài = 1. Gọi O là giao điểm của AC và BD. I là trung điểm của SO. Mặt phẳng \(\left(\alpha\right)\) thay đổi đi qua I và cắt SA,SB,SC,SD lần lượt tại M,N,P,Q. Tìm GTNN của biểu thức \(T=\dfrac{1}{2SM^2}+\dfrac{1}{2SN^2}+\dfrac{1}{SP^2}+\dfrac{1}{SQ^2}\)
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M là trung điểm cạnh SA và (a) là mặt phẳng chứa OM song song với AD. Gọi N,P,Q lần lượt là giao điểm của (a) với các cạnh SD, CD và AB.
1/ Thiết diện của (a) với hình chóp là gì?
2/ Chứng minh SB // (a).
3/ Giả sử SBC là tam giác đều. Tính số đo các góc của tứ giác MNPQ.
Cho hình chóp S.ABC có G là trọng tâm tam giác ABC. Gọi M là trung điểm của SG, gọi giao điểm của mặt phẳng (P) qua M với các cạnh SA, SB, SC tại A', B', C' Tính \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}\)