Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a, tâm O, SA = SB = 4a. Gọi G là trọng tâm tam giác BCD, (α) là mặt phẳng qua G và song song với (SAD). Tính diện tích thiết diện của (α) và hình chóp.
Cho hình vuông ABCD cạnh a tâm O. Gọi S là một điểm ở ngoài mặt phẳng ( ABCD ) sao cho SB=SD. Gọi M là điểm tùy ý trên AO với AM=x. Mặt phẳng alpha qua M song song với SA và BD cắt SO, SB, AB tại N, P, Q.
a) Tứ giác MNPQ là hình gì
b) Cho SA = a. Tính diện tích MNPQ theo a và x.
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, SAB là tam giác vuông tại A với SA =a. Gọi M là một điểm thay đổi trên cạnh AD, đặt AM=x(0<x<a) .Mp (a) qua M và song song CD và SA
a)Dựng thiết diện của hình chóp với mặt phẳng (a), thiết diện là hình gì? b)Tính diện tích thiết diện theo a và x
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SBD đều cạnh a. Gọi M, P là hai điểm lần lượt di động trên cạnh SA, SC (không trùng với S) sao cho SA/SM + SC/ SP = 3, (a) là mặt phẳng di động chứa M, P cắt SB, SD lần lượt tại N, Q. Diện tích tam giác SNQ đạt giá trị nhỏ nhất là
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M là trung điểm cạnh SA và (a) là mặt phẳng chứa OM song song với AD. Gọi N,P,Q lần lượt là giao điểm của (a) với các cạnh SD, CD và AB.
1/ Thiết diện của (a) với hình chóp là gì?
2/ Chứng minh SB // (a).
3/ Giả sử SBC là tam giác đều. Tính số đo các góc của tứ giác MNPQ.
cho S.ABCD có đáy là hình thang sao cho AD song song BC và AD=2BC .M là trung điểm SA khi đó xác định thiết diện hình chóp cắt bởi mặt phẳng (MBC)
Giups em vs ạ
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là điểm \(\overrightarrow{SO}=5\overrightarrow{SI}\), (a) là mặt phẳng đi qua AI và cắt SA, SB, SC, SD tại thứ tự M, N, P, Q Tính \(\dfrac{SA}{SM}+\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}\)