Chương 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Tien Dat

Cho hình chóp S.ABCD đáy là hình thang, đáy lớn BC = 2a, AD = a, AB = b. Mặt bên (SAD) là tam giác đều. Mặt phẳng \(\left(\alpha\right)\) qua điểm M trên cạnh AB và song song SA,BC. \(\left(\alpha\right)\) cắt CD,SC,SB lần lượt tại N,P,Q. Đặt AM = x(0<x<b). GTLN của diện tích thiết diện tạo bởi \(\left(\alpha\right)\) và hình chóp S.ABCD là

nguyen thi vang
5 tháng 1 2021 lúc 20:54

\(\left(\alpha\right)//SA\) và BC nên \(\left(\alpha\right)//\left(SAD\right)\)

=> MQ //SA, NP//SD  ta có

MN//PQ//AD//BC

ABCD : \(\dfrac{BM}{BA}=\dfrac{CN}{CD}\left(1\right)\)

Theo định lí Ta let trong tam giác:

\(\Delta SAB:\dfrac{BM}{BA}=\dfrac{BQ}{BS}=\dfrac{MQ}{SA}\left(2\right)\)

\(\Delta SCD:\dfrac{CN}{CD}=\dfrac{CP}{CS}=\dfrac{PN}{SD}\left(3\right)\)

Từ (1) (2) và (3) suy ra: \(MQ=NP=\dfrac{b-x}{b}a\)

\(PQ=\dfrac{x}{b}.2a\) 

\(MN=a+\dfrac{x}{b}a\)

=> thiết diện là hình thang cân và \(S_{td}=\dfrac{1}{2}\left(MN+PQ\right)\sqrt{MQ^2-\left(\dfrac{MN-PQ}{2}\right)^2}\)

\(\dfrac{1}{2}\left(\dfrac{ab+ax}{b}+\dfrac{2ax}{b}\right)\sqrt{\dfrac{a^2\left(b-x\right)^2}{b^2}-\dfrac{a^2\left(b-x\right)^2}{4b^2}}\)

=\(\dfrac{1}{2}.\dfrac{a\left(b+3x\right)}{b}.\dfrac{a\sqrt{3}\left(b-x\right)}{2b}\)

\(\dfrac{a^2\sqrt{3}}{12b^2}\left(3x+b\right)\left(3b-3x\right)\le\dfrac{a^2\sqrt{3}}{12b^2}\left(\dfrac{3x+b+3b-3x}{2}\right)^2=\dfrac{a^2\sqrt{3}}{3}\)

Vậy diện tích lớn nhất của thiết diện là \(\dfrac{a^2\sqrt{3}}{3}\) khi x= \(\dfrac{b}{3}\)

LyNguyễn
4 tháng 10 2023 lúc 13:28

[TEX]\frac{QP}{BC}=\frac{SQ}{SB}=\frac{AM}{AB}[/TEX]

\Rightarrow[TEX]QP=\frac{2ax}{b}[/TEX]

[TEX]\frac{QM}{SA}=\frac{BM}{BA}[/TEX]

\Rightarrow[TEX]QM=\frac{a(b-x)}{b}[/TEX]

Do MNPQ là hình thang cân

\Rightarrow[TEX]MN=\frac{a(b-x)}{b}+\frac{2ax}{b}=\frac{ab+ax}{b}[/TEX]

Vậy [TEX]S_{MNPQ}=\frac{(\frac{2ax}{b}+\frac{ab+ax}{b})\frac{\sqrt{3}a(b-x)} {2B}}{2}[/TEX]

=[TEX]\frac{(3ax+ab)(\sqrt{3}ab-\sqrt{3}ax)}{b^2}[/TEX]


Các câu hỏi tương tự
Pham Tien Dat
Xem chi tiết
Nguyễn Hoàng Minh Thương
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Big City Boy
Xem chi tiết
camcon
Xem chi tiết
camcon
Xem chi tiết
Gicungko MuheoShopyy
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Hùng Nguyễn
Xem chi tiết