Có: \(\widehat{A}=\widehat{D}=90\)\(\Rightarrow\)AB//CD. Từ Thales có:
\(\frac{OD}{OC}=\frac{OB}{OA}=\frac{OD+OB}{OC+OA}=\frac{BD}{AC}\Rightarrow\frac{OD}{DB}=\frac{OC}{CA}\)
Xét \(\Delta OAB\) và \(\Delta OCD\) có:
\(\widehat{AOB}=\widehat{COD}\) (2 góc đối đỉnh)
\(\widehat{A_1}=\widehat{C_1}\) (2 góc so le trong)
\(\Rightarrow\Delta OAB\sim\Delta OCD\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)
Xóa phần b nhé bạn!