Cho hình vuông ABCD. Đường thẳng đi qua A cắt cạnh BC tại M, cắt đường thẳng DC tại N. Chứng minh rằng: 1/DC2=1/AN2+1/AM2 (vẽ thêm hình nhé)
Cho hình vuông ABCD. Vẽ một đường thẳng bất kì qua A cắt cạnh BC, tia CD lần lượt tại E, F. Chứng minh rằng: 1/AE2 + 1/AF2 = 1/AD2
Cho tam giác APN vuông tại A, đường cao AD. Trên nửa mặt phẳng bờ AD không chứa P vẽ hình vuông ABCD. Cạnh AN cắt BC tại M. Chứng minh rằng:
a) BM=PD
b) tam giác APM cân tại A.
c) 1/AD2=1/AN2+1/AM2
Vẽ thêm hình nhé
Cho tam giác ABC vuông tại A (Ab > AC), đường cao AH(H thuộc BC), Trên tia đối của tia CB lấy điểm M sao cho HM=HA. Qua điểm M kẻ đường thẳng vuông góc với MB cắt đường thẳng AB tại N. Gọi P là trung điêmr của CN. Tia AP cắt đường thẳng BC tại Q. Chứng minh: a) Tam giác NCB đồng dạng tam giác MAB
Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L.
Khi AI = a/2, hãy sử dụng hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng DL, DK, KC, CL.
Hình vẽ:
Bài 4.Cho hình thoi ABCD có A= 120 độ, tia Ax tạo với tia AB góc BAx =15 độ, cắt BC, CD lần lượt tại M, N. Chứng minh: 1/AM mũ 2 + 1/AN mũ 2= 1/3AB mũ 2
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M. Đường thẳng vuông góc với AM tại A cắt đường thẳng CD tại N.
a. Chứng minh AM=AN.
b. Gọi gia điểm của đường thẳng AM với đường thẳng CD là I. Chứng minh \(\dfrac{1}{AM^2}+\dfrac{1}{AI^2}=\dfrac{1}{AB^2}\)
Giúp mình nha!
Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L.
Tìm giá trị nhỏ nhất của tích DI.DK khi I thay đổi trên AB
Hình vẽ:
Cho hình chữ nhật ABCD có AB=2AD. Gọi E là điểm bất kì trên cạnh BC. Gọi F là giao điểm của đường thẳng AE và DC. Qua A vẽ đường thẳng vuông góc với AE cắt CD tại M.
a/ Chứng minh rằng \(\frac{4}{AB^2}=\frac{4}{AE^2}+\frac{1}{AF^2}\)
b/ Kẻ DN⊥AM (điểm N thuộc AM). Đặt \(\widehat{AMD}=\alpha\). Chứng minh \(MN=MF\times\cos^3\alpha\)