cho hình thoi ABCD có A =12o độ tia Ax tạo với tia AB 1 góc BAx =15 độ và cắt cạnh BC tại M cắt đt CD tại N
CMR \(\dfrac{1}{AN^2}+\dfrac{1}{AM^2}=\dfrac{4}{3AB^2}\)
Cho hình thoi ABCD ,cạnh a và góc A =120 độ .Qua A vẽ 1 đường thẳng tạo với AB một góc 15 độ . Đường thẳng này cắt cạnh BC ở E và cắt đường thẳng CD ở F. Chứng minh rằng : \(\dfrac{4}{3AB^2}\) =\(\dfrac{1}{AE^2}\)+\(\dfrac{1}{AF^2}\)
Mn cho mình hỏi 3 bài toán hình đc k ạ. Mình chỉ mới học đến bài hệ thức lượng trong tam giác vuông thôi nhé.
Bài 1: Tam giác ABC có AB = 6cm AC = 8cm. 2 đường trung tuyến BD và CH vuông góc. BC=?
Bài 2 : Cho hcn ABCD có AB=2BC. Trên cạnh BC lấy E bất kì . Tia AE cắt CD tại F. CM : \(\dfrac{1}{^{ }AB^2}\) =\(\dfrac{1}{AE^2}\) + \(\dfrac{1}{4AF^2}\)
Bài 3 : Cho hình thoi ABCD có góc A = \(120^o\), tia Ax tạo với tia AB góc Bax= \(15^o\) và cắt BC tại M, cắt DC tại N. CM \(\dfrac{1}{AM}\) + \(\dfrac{1}{AN}\) = \(\dfrac{\text{4}}{3AB^2}\).
Cảm ơn mọi người.
Cho hình thang vuông ABCD và điểm M thuộc cạnh BC. Kéo dài AM cắt tia CD tại N. Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E.
a) Chứng minh: AE = AN
b) Chứng minh: 1/AB2 = 1/AM2 + 1/AN2
Cho hình thoi ABCD, có góc A=120 độ, cạnh AB=a, Kẽ tia à nằm trong góc A và góc xAB=15độ. Ax cắt BC,CD theo thứ tự tại I,K. Tính theo a của giá trị biểu thức : \(\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\)
Cho tam giác abc, đường cao ah kẻ hm,hn lần lượt vuông góc với ab và ac a, chứng minh mb/nh = ab mũ 2 / ac mũ 2 b, chứng minh bc.bm.cn=ah mũ 3 c, chứng minh am.ab=hb.hc=mn mũ 2 d, chứng minh bm.ba+an.ac=hb.bc e, cho hb=4cm, hc=9cm tính chu vi tam giác abc và diện tích tứ giác amhn f, gọi m,n lần lượt là hình chiếu cửa h trên ab,ac chứng minh ah mũ 3 =am.an.bc g, chứng minh (ab/ac) mũ 3 = bm/cn h, chứng minh căn bậc 3 bc mũ 2 = căn bậc 3 bm mũ 2 + căn bậc 3 cn mũ 2 i, chứng minh bm.ba+cn.ca+2.bh.ch=bc mũ 2
Cho hình vuông ABCD. Vẽ một đường thẳng bất kì qua A cắt cạnh BC, tia CD lần lượt tại E, F. Chứng minh rằng: 1/AE2 + 1/AF2 = 1/AD2
Cho hình vuông ABCD. Qua A, vẽ cát tuyến bất kì cắt cạnh BC, tia CD lần lượt tại E, F. Chứng minh : 1/AD^2 = 1/AE^2 + 1/AF^2
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M. Đường thẳng vuông góc với AM tại A cắt đường thẳng CD tại N.
a. Chứng minh AM=AN.
b. Gọi gia điểm của đường thẳng AM với đường thẳng CD là I. Chứng minh \(\dfrac{1}{AM^2}+\dfrac{1}{AI^2}=\dfrac{1}{AB^2}\)
Giúp mình nha!