2. Cho hình thang ABCD (AB//CD). Vẽ BH vuông góc CD (H thuộc CD). Cho biết BH=12cm, DH=16cm, CH=9 cm, AD=14cm.
a) Tính độ dài DB, BC
b) Chứng minh tam giác DBC vuông
c) Tính các góc của hình thang ABCD ( làm tròn đến độ)
Cho hình thang ABCD (AB//CD), góc D = 90 độ, góc C bằng 30 độ
a) Chứng minh rằng diện tích hình thanh ABCD = 1/4*BC*(AB+CD)
b) Gọi M là giao điểm của BC và AD. Kẻ DK vuông góc với CM (K thuộc CM), KL vuông góc với DM (L thuộc DM). Chứng minh rằng 4*DL*DM=CD2
c) Biết BC = 8cm, diện tích hình thang ABCD = 48 cm2. Tính DM, MC (không làm tròn kết quả)
Mng giúp mik với, mai mik ktra rồi
Cho hình thang vuông ABCD và điểm M thuộc cạnh BC. Kéo dài AM cắt tia CD tại N. Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E.
a) Chứng minh: AE = AN
b) Chứng minh: 1/AB2 = 1/AM2 + 1/AN2
Cho hình chữ nhật ABCD, vẽ BH vuông góc AC tại H, tia BH cắt CD tại I và cắt đường thẳng AD tại K. Chứng minh :
a) AC * AH = BH * BK
b) BH^2 = HI * HK
Cho tam giác ABC vuông tại A có AC=3cm, AB=4cm, BC=5cm. a)Chứng minh tam giác ABC vuông. Tính góc B và C b) Phân giác của góc A cắt BC tại D. Tính BD và CD.
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
Cho hình thang ABCD có AB // CD , AD = 12 cm , CD = 16 cm . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O . Tính diện tích ABCD
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
a) Chứng minh: AE.EB=HE2
b) Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
Cho Tam giác ABC vuông tại A có AB=9 cm, BC=15, đường cao AH
a) Tính AH, CH
b) qua B vẽ đường thẳng vuông góc với BC cắt AC tại D. Tia phân giác của C cắt AB tại N và BD tại M. Chứng minh CN.CD=CM.CB
c) Chứng minh NA.CD=MD.CA