nhận xét : Thang cân => 2 đường chéo bằng nhau. Gọi O là giao của 2 đường chéo,
hai đường chéo vuông góc => tam giác OCD vuông cân đỉnh O
vẽ: vẽ tam giác vuông cân COD , trên tia đối của tia OC lấy A , trên tia đối của tia
OD lấy B sao cho OA = OB (< OC nếu AB là đáy nhỏ) => ABCD là thang cân đáy nhỏ AB, dáy lớn CD và có 2 đường chéo vuông góc
*Tính AB + CD:
Từ A và B hạ AH và BK vuông góc CD , H,K thuộc CD . D0 ABCD là thang cân đáy AB, CD
=> DH = CK và AB = HK => AB + CD = AB + DH + HK+KC = HK + CK + HK+KC =2HC
tam giác OCD vuông cân đỉnh O => góc OCD =45 độ => góc ACD =45 độ
lại có tam giác AHC vuông tại H, góc ACD =45 độ => vuông cân => HC = AH = h
=> tổng 2 đáy AB + CD = 2h
kẻ AE//BD, AE giao CD = E
=> AE = BD ( theo nx)
=> AB= ED ( theo nx 2 )
ABCD là hình thang cân
=> AC= BD ( t/c hình thang )
mà AE= BD ( cmt )
=> AE= AC
=> tg AEC cân tại A
AH là đường cao đồng thời là đường trung tuyến
=> HE=HC
Gọi AC giao Bd tại O
AE// Bd ( gt )
=> góc EAc = góc DOC = 900 ( đồng vị )
tg AEC vuông cân
=> AH = \(\frac{EC}{2}\) ( vì trogn tg vuông cân đường trung tuyến bằng nửa cạnh huyền )
=> 2AH = EC = 2h
mà EC = ED + DC
ED = AB ( cmt )
=> AB+DC = 2h