Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho hình thang ABCD (AB//CD) và AB=BC
a) Chứng minh : CA là phân giác của góc BCD
b) Gọi M , N , E , F lần lượt là trung điểm của AD , BC , AC , BD . Chứng minh : M , N, E ,F thẳng hàng
Cho hình thang ABCD có AB song song với CD, gọi E,F lần lượt là trung điểm của AD và BC phân giác của góc A và góc B cắt EF theo thứ tự ở I và K. chứng minh :
a)cm:tam giác AIK và tam giác BKF cân
b)tam giác AID và tam giác BKC
c)IE=1/2AD;KF=1/2KC
d)cho AB=5cm , CD = 18cm, AD=6cm,BC=7cm.Tính IK
Cho hình thang ABCD (AB//CD). I,F lần lượt là trung điểm của AB,CD. Các đường phân giác của góc Avaf góc D cắt nhau tại E ,của góc B và góc C cắt nhau tại S . Chứng minh rằng :
a) Gióc AED và góc BSC bằng 90 độ .
b) E,F nằm trên đường trung bình IS
c) Nếu IE=SF thì hình thang ABCD là hình gì ?
Cho hình thang cân ABCD (AB//CD) và CD=2AB. Gọi M , N , P lần lượt là trung điểm của các cạnh BC , CD , AD.
a. Chứng minh ABCN là hình thang.
b. Gọi O là giao điểm của AC và BN. Chứng minh ba điểm P , O , M thẳng hàng.
c. Chứng minh PO=2OM
B1: Cho hình thang cân ABCD ( AB // CD; AB < CD ). Biết AC cắt BD tại O và góc DOC = 600. Gọi I, J, K theo thứ tự là trung điểm OD, OA, BC. CM tam giác IJK đều.
B2: Cho x, y thỏa mãn 2x + y = 6.
Tìm giá trị nhỏ nhất của biểu thức A = \(4x^2+y^2\)
B3: Cho x, y thỏa mãn \(x^2+y^2=50.\) Tìm giá trị nhỏ nhất và lớn nhất của biểu thức B = xy
1 cho hình thang ABCD (AB//CD) có AB=AD và AC=CD. Tính các góc của hình thang (vẽ hình dùm mình)
2. cho tam giác ABC vuông tại A có góc B= 6o độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) c/m tam giác CEF đều
b)vẽ CD vuông góc với EF. c/m tứ giác ABCD là hình thang vuông.( câu này cũng vẽ hình dùm mình un)
Cho hình thang cân ABCD, hai đáy AB,CD. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh :
a) Tam giác ANB cân.
b) MN là trung trực của đoạn thẳng AB.
Bài 1:Cho tứ giác ABCD, M, N, I, K lần lượt là trung điểm AB, BC, CD, DA. Chứng minh MNIK là hình bình hành.
Bài 2. Cho điểm D nằm bên trong tam giác đều ABC. Vẽ các tam giác đều BDE, CDF (E, F, D nằm cùng phía đối với BC). Chứng minh rằng AEDF là hình bình hành.
Bài 3. Cho hình bình hành ABCD, hai đường chéo không vuông góc với nhau. Vẽ điểm E đối xứng với A qua BD. Chứng minh rằng 4 điểm B, C, E, D là 4 đỉnh của một hình thang cân.
Help me, mai đi hk r