a)Xét ΔADN và ΔBCN có: AD=BC; góc D= góc C (ABCD là hình thang cân); DN=CN( N là trung điểm của CD). Vậy ΔADN= ΔBCN (c.g.c)→AN=BN→Tam giác ANB cân
b) Vì ΔANB cân, có NM là đường trung tuyến nên đồng thời cũng là đường trung trực của đoạn thẳng AB
a)Xét ΔADN và ΔBCN có: AD=BC; góc D= góc C (ABCD là hình thang cân); DN=CN( N là trung điểm của CD). Vậy ΔADN= ΔBCN (c.g.c)→AN=BN→Tam giác ANB cân
b) Vì ΔANB cân, có NM là đường trung tuyến nên đồng thời cũng là đường trung trực của đoạn thẳng AB
Cho hình thang ABCD, 2 đáy AB, CD. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh :
a) Tam giác ANB cân.
b) MN là đường trung trực của đoạn thẳng AB
Cho hình thang cân ABCD (AB//CD) và CD=2AB. Gọi M , N , P lần lượt là trung điểm của các cạnh BC , CD , AD.
a. Chứng minh ABCN là hình thang.
b. Gọi O là giao điểm của AC và BN. Chứng minh ba điểm P , O , M thẳng hàng.
c. Chứng minh PO=2OM
Cho hình thang ABCD (AB//CD) và AB=BC
a) Chứng minh : CA là phân giác của góc BCD
b) Gọi M , N , E , F lần lượt là trung điểm của AD , BC , AC , BD . Chứng minh : M , N, E ,F thẳng hàng
Cho ABCD là hình thang có đáy lớn AB=3a, đáy nhỏ CD=a và góc ADC=1200. Gọi M và N theo thứ tự là trung điểm của AB và AC. CMR:
a)AMNC là hình thang cân
b)Gọi I là trung điểm của MN, giao của CI với AB là E. CM: EMCN là hình chữ nhật và AECD là hình thoi.
c)Tam giác ECD vuông tại C.
Cho hình thang cân ABCD ( AB//CD) . Gọi Olà giao điểm của AC & BD
1) Chứng minh rằng OA=OB
2) Đoạn thẳng AD cắt đường thẳng BC tại E . Chứng minh rằng : EO là đường trung trực của đoạn thẳng AB & đoạn thẳng CD
1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.
2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.
Cho hình thang ABCD (AB// CD). Gọi E là giao điểm của 2 đường thẳng AD và BC. Gọi M, N, P, Q theo thứ tự là các trung điểm của của các đoạn thẳng AE, BE, AC, BD. chứng minh tứ giác MNPQ là hình thang.
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED