Cho hình thang ABCD (AB// CD) AB< CD, AC giao BD = { O }. Đường thẳng qua A // BC cắt BD ở E, cắt CD tại M. Đường thẳng qua B // AD cắt AC tại F cắt CD tại N. Chứng minh:
a. EF // AB
b. AB2 = EF.CD
cho hình thang ABCD(AB//CD)có AB=15cm; CD=20cm, gọi Mlà trung điểm của CD. E là giao điểm của AM&BD.
a/ cm: EM=2/3EA
b/ gọi F là giao điểm của AC&BM. Tính EF
c/ cm: AF . AM . MC = AB . AC . ME
Cho hình thang ABCD (AB // CD ), có O là giao điểm 2 đường chéo AC và BD.
Đường thẳng song song với AB cắt AD, BD, AC, BC lần lượt tại E, F, G, H.
a) Chứng minh OA . OF = OB . OG
b) Chứng minh EF = GH
Cho hình thang ABCD(AB//CD,AB<CD).Có O là giao điểm của 2 đường chéo.Qua O kẻ 2 đường thẳng song song với 2 đáy cắt AD tại M,cắt BC tại N.
a) So sánh các tỉ số OM/CD và AO/AC,ON/CD và OB/BD.
b) Chứng minh OM=ON.
c) Tính MN biết AB=4cm CD=6cm.
d) Gọi E là giao điểm của 2 đường thẳng AD và BC.Chứng minh E,O và trung điểm của BC thẳng hàng.
e) Qua B kẻ đường thẳng song song với AD cắt AC tại K. Chứng minh OA mũ 2 = OK*OC
Cho hình thang ABCD (ab//cd) O là giao điểm của 2 đường chéo AC và BD . ĐUowngf thẳng vẽ qua O // AD cắt AD và BC theo thứ tự tại M và N . CMR : 1/AB + 1/CD = 2/MN
cho hình thnag abcd (ab//cd), hai đường chéo ac và bd cắt nhau taiij o . một đường thẳng d qua o // với 2 đáy cắt ad tại e, bc tại f . chứng minh 1/ab +1/cd =2/ef
Cho hình thang ABCD, AB song song với CD có AB=7,5 cm, CD=12 cm. Gọi M là trung điểm của CD, E là giao điểm AM và BD, F là giao điểm BM và AC. Chứng minh rằng:
a, EF song song với AB
b, Tính EF