Gọi K là trung điểm của HD
Xét ΔHDC có
K,M lần lượt là trung điểm của HD,HC
=>KM là đường trung bình của ΔHDC
=>KM//DC và \(KM=\dfrac{DC}{2}\)
KM//DC
AB//DC
Do đó: KM//AB
KM//DC
DC\(\perp\)AD
Do đó: \(MK\perp AD\)
Xét ΔADM có
MK,DHlà đường cao
MK cắt DH tại K
Do đó: K là trực tâm của ΔADM
=>AK\(\perp\)DM
mà BM\(\perp\)DM
nên AK//BM
Xét tứ giác ABMK có
AB//MK
AK//BM
Do đó: ABMK là hình bình hành
=>MK=AB
=>CD=2AB