Lời giải:
Kẻ $CH\perp AB$ với $H\in AB$
Dễ thấy $ADCH$ là hình chữ nhật nên $AH=CD=10$ (cm)
$BH=AB-AH=45-10=35$ (cm)
Áp dụng định lý Pitago cho tam giác $BHC$ thì:
$CH=\sqrt{BC^2-BH^2}=\sqrt{37^2-35^2}=12$ (cm). Đây chính là chiều cao hình thang.
$S_{ABCD}=\frac{(AB+CD).CH}{2}=\frac{(45+10).12}{2}=330$ (cm vuông)