Gọi giao của BC và AD là H
Xét ΔHCD có AB//CD
nên HB/BC=HA/AD
mà HB<HA
nên BC<AD
Gọi giao của BC và AD là H
Xét ΔHCD có AB//CD
nên HB/BC=HA/AD
mà HB<HA
nên BC<AD
Cho hình thang ABCD biết AB song song với CD và góc B bằng góc C và bằng 90 độ . Chứng minh rằng BC < AD
Cho hình thang ABCD AB song song CD có góc C + góc D bằng 90 độ AB = 5 cm CD = 15 cm AD bằng 6 cm BC = 8 cm Tính diện tích hình thang
hình thoi ABCD có AB song song với CD có góc acd bằng góc bdc chứng minh rằng ABCD là hình thang cân
Vẽ một hình thang cân ABCD có đáy AB song song CD, góc A bằng 60 độ cạnh AB bằng 6 cm, cạnh AD = BC = CB = 3 cm vẽ đường chéo BD .Hãy tính các góc của tam giác BCD?
cho hình thang cân ABCD có AB song song với CD AB nhỏ hơn CD Biết ad = ab a Chứng minh AB = BC b Chứng minh DB là tia phân giác của ADC
Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Cho hình thang ABCD (AB song song AD). Góc B bằng góc 2A. Tính các góc của hình thang?
Bài 1. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 2. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 1: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 2: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 3: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.