a. ta có: AB//CD ( gt )
Áp dụng hệ quả Ta-lét, ta có:
\(\dfrac{ID}{IB}=\dfrac{IC}{IA}\)
\(\Leftrightarrow IA.ID=IB.IC\)
b. xét tam giác IHA và tam giác IKD có : AH // HD
\(\Rightarrow\dfrac{IH}{IK}=\dfrac{AH}{CK}\) ( ta-lét )
xét tam giác IHB và tam giác IKC có: BH // HC
\(\Rightarrow\dfrac{IH}{IK}=\dfrac{BH}{DK}\) ( ta-lét )
\(\Rightarrow\dfrac{IH}{IK}=\dfrac{AH}{CK}=\dfrac{BH}{DK}\Leftrightarrow\dfrac{IH}{IK}=\dfrac{AH+BH}{CK+DK}\) ( t. chất dãy tỉ số = nhau )
\(\Leftrightarrow\dfrac{IH}{IK}=\dfrac{AB}{CD}\) ( AH+BH = AB; CK + DK = CD )
b, Theo hệ quả Ta lét \(\dfrac{AB}{CD}=\dfrac{AI}{IC}\)(*)
Xét tam giác HIA và tam giác KIC có
^HIA = ^KIC (đối đỉnh)
^IHA = ^IKC = 900
Vậy tam giác HIA ~ tam giác KIC (g.g)
\(\Rightarrow\dfrac{IH}{KI}=\dfrac{AI}{IC}\)(**)
Từ (*) ; (**) suy ra \(\dfrac{IH}{KI}=\dfrac{AB}{CD}\)