cho hcn ABCD 2 đường chéo AC và BD cắt nhau tại O.Qua D kẻ đường thẳng vuông góc với BD tại D và cắt đường thẳng BC tại E
a,CM tam giác BDE đồng dạng với tam giác DCE
b,kẻ CH vuông góc với DE tại H .CMR DC bình =CH.DB
c,CM ba đường OE,CD,BH đồng quy tại O
cho hình chữ nhật ABCD có AB=60cm,AD=32cm.từ D kẻ đường thẳng vuông góc với đường cháo AC,đường thẳng này cắt AC tại E và AB tại F
a) chứng minh tam giác ABD đồng dạng tam giác ADC
b) cm tam giác ADF đồng dạng tam giác DCA
Cho ∆ABC vuông tại A , có AB=16cm ; BC=20cm . Kẻ đường phân giác BD ( D thuộc AC ) a) Tính CD và AD b) từ C kẻ CH vuông góc BD tại H . CM ∆ABD đồng dạng với ∆HCD c) Tính diện tích ∆HCD
Cho ∆ABC vuông tại A. Đường phân giác của góc A cắt cạnh BC tại D. Qua Đó kẻ đường thẳng vuông góc với BC cắt AC tại E a) CM ∆DEC đồng dạng với ∆ABC b) CM : DB= DE
cho tam giác ABC có ba góc nhọn (Ab<AC) có ba đường cao AD, BE, CF cắt nhau tại H. a)Cm: tam giác BFH dồng dạng tam giác CEH và FA.BH=FH.AC b)Gọi I là trung điểm BC và K đối xứng với H qua I.Cm: tam giác AKC đồng dạng tam giác AHF c)AK cắt HC tại . Lấy điểm M trên đoạn thẳng AC sao cho EF//Om.Cm:HM vuông góc AD
Cho tam giác ABC cân tại A có AB = AC = 6cm ; BC = 4cm . Các đường phân giác BD và CE cắt nhau tại I ( E trên AB và D trên AC )
a) Tính độ dài AD , ED
b) Cm : Tam giác ADB đồng dạng với tam giác AEC
c) Cm : IE.CD = ID.BE
d) Cho \(S_{ABC}\) = 60 \(cm^2\) . Tính \(S_{AED}\)
Cho hình thằng ABCD có AB//CD, hai đường chéo cắt nhau tại O. Biết AB=6cm, OA=3cm, OC=9cm, OD=12cm. Qua O kẻ đường thẳng song song với CD cắt hai cạnh AD và BC theo thứ tự là M và N.
a. Tính OB và CD
b. Chứng minh OA.OD=OB.OC
c. Chứng minh OM=ON
Cho góc nhọn xoy.Lấy A,B trên oy sao cho OA=5cm,OB=16cm.Lấy C,D trên ox sao cho OC=8cm,OD=10cm có AD và BC cắt nhau tại I.Chứng minh rằng a)∆OCB~∆OAD
b)∆IAB và ∆ICD có các góc bằng nhau từng đôi 1