Ta có: MN // AB (gt); AB // CD(gt) => MN // AB // CD
Xét tam giác ABC có: OM // AB (MN // AB)
=> \(\dfrac{OM}{AB}=\dfrac{CM}{CA}\) (hệ quả định lý Ta lét trong tam giác) (1)
Xét tam giác ABD có: ON // AB (MN // AB)
=> \(\dfrac{ON}{AB}=\dfrac{DN}{DB}\) (hệ quả định lý Ta lét trong tam giác) (2)
Xét hình thang ABCD có: MN // AB // CD (cmt)
=> \(\dfrac{CM}{CA}=\dfrac{DN}{DB}\) (định lý Ta lét trong hình thang) (3)
Từ (1) (2) (3) => OM = ON
Trong ∆DAB có: \(\dfrac{MO}{AB}=\dfrac{DO}{DB}\) ( hệ quả Ta lét) (1)
Trong ∆CAB có: \(\dfrac{NO}{AB}=\dfrac{CO}{AC}\) ( hệ quả Ta lét) (2)
Trong ∆OAB có: \(\dfrac{CO}{CA}=\dfrac{DO}{DB}\) ( hệ quả Ta lét) (3)
từ (1), (2), (3) => \(\dfrac{MO}{AB}=\dfrac{NO}{AB}\) =>\(MO=NO\)