Cho hình chữ nhật ABCD có \(AB=\dfrac{3}{2}AD\). Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho MN vuông góc với AE. Đường phân giác của góc DAE cắt CD tại P. Chứng minh rằng: \(MN=\dfrac{2}{3}BD+DP\)
Cho hình chữ nhật ABCD, AB = 2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Cmr: \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)
Cho hình chữ nhật ABCD, AB=2BC.TRên cạnh BC lấy điểm E, tia AE cắt CD tại F, vẽ AK\(\perp\)AF(K\(\in\)CD):
CMR:\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)
cho tam giác ABC, D là một điểm trên cạnh BC. Qua D kẻ đường thẳng song song với AB cắt AC ở E. Trên cạnh AB lấy điểm F sao cho AF=DE. Gọi I là trung điểm của AD. Chứng minh:
a) DF=AE
b) E và F đối xứng với nhau qua điểm I
Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh:
\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4DF^2}\)
Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=150^o\). Lấy điểm E thuộc cạnh BC sao cho \(\widehat{BAE}=30^o\).Tia AE cắt đường thẳng CD tại F. Chứng minh rằng: \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{4}{a^2}\)
Cho hình chữ nhật ABCD, AB= 2BC. Trên cạnh BC lấy điểm E, AE cắt đt CD tại F. CMR: 1/AB2= 1/AE2 + 1/4AF2
Cho hình chữ nhật ABCD, AB= 2BC. Trên cạnh BC lấy điểm E, AE cắt đt CD tại F. CMR: 1/AB2= 1/AE2 + 1/4AF2
Cho hình vuông ABCD. Gọi E là một điểm nằm trên cạnh BC. Qua E kẻ tia Ax vuông góc với AE, tia Ax cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G.