Cho hình thang ABCD vuông tại A và B có D = 45o, BC = 6cm, AB = 8cm.
a) Tính AD, CD.
b) Gọi M, N, E, F là trung điểm của AB, CD, BD, AC. Chứng minh M, N, E, F thẳng hàng.
c) BN cắt AD tại K, EN cắt CK tại Q. Chứng minh BCKD là hình bình hành, QB = QA.
d) Chứng minh: CK^2 = AC^2 + AK^2 - 2.AC.AK.cosKAC
Em làm được a,b rồi ạ. Mong anh chị giúp em câu c,d ạ.
cho hình chữ nhật ABCD. Một đường thẳng qua A cắt BC và CD lần lượt tại E,F. CM \(\frac{AB^2}{AE^2}+\frac{AD^2}{AF^2}=1\)
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường cao AH.
a) Tính AH,BH (đã làm)
b) Kẻ đường phân giác AD, tính BD,CD (đã làm)
c)Tính tỉ số lượng giác của góc HAD
d) Tính số đo góc B,C
Giúp mình với mình đang cần gấp (ko cần vẽ hình cũng đc)
cho tam giác abc đường cao AH.Gọi D.,E theo thứ tự là hình chiếu của H trên AB,BC.Các đường thẳng vuông góc với DE tại D và E cắt BC theo thứ tự tại M và N.
a)cm:M là trung điểm BH,N là trung điểm HC
B)cho BH=4cm,CH=9cm.Tính diện tích DENM
Cho đường tròn (O; BC 2 ) , lấy điểm A bất kỳ trên đường tròn không trùng với B, C. Trên nửa mặt phẳng bờ BC chứa điểm A dựng tiếp tuyến của đường tròn tại B cắt CA tại điểm D. Từ D kẻ tiếp tuyến thứ hai DE (E thuộc đường tròn), từ E hạ EH vuông góc với BC cắt CD tại G. OD cắt BE tại I. Khẳng định nào sau đây là sai? A. DI.DO=DA.DC B.IG vuông góc EH C. GE = GH D.DEᒾ =DA.CA
Cho hình chữ nhật ABCD có AB=m.AD (m>0), điểm E thuộc cạnh BC, đường thẳng AE cắt DC tại F. C/m: \(\frac{^{m^2}}{AB^2}=\frac{m^2}{AE^2}+\frac{1}{AF^2}\)
Cho hình vuông ABCD. Gọi E là một điểm nằm trên cạnh BC. Qua E kẻ tia Ax vuông góc với AE, tia Ax cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G. CMR:
a) AE=AF và tứ giác EGFK là hình thoi
b)Tam giác AKF đồng dạng với tam giác CAF
Cho hình vuông ABCD có độ dài cạnh bằng a. E là một điểm di chuyển trên CD( E khác C và D). Đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại K.
a. CMR 1/AE2 +1/AF2 ko đổi
b. CM cosAKE= sinEKF.cosFKF+sinEFK. cosEKF