Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
cho hình chữ nhật ABCD(AB>BC),kẻ AH⊥BD . Trên tia đối của tia AH lấy điểm E sao cho AE=BD.Tính số đo \(\widehat{EDB}\)
cho hình chữ nhật ABCD có AB=8cm, AD=6cm. từ A hạ AH vuông góc BD(H thuộc BD)
a.cmr:AD.AB=AH.DB
b.tính AH
c.tính diện tích hình thang AHCB
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
tam giác ABC vuông tại A với AB=2AC. vẽ AH vuông góc BC tại H. lấy D thuộc BC sao cho AC=CD, điểm E thuộc AB sao cho BE=BD. trên tia đối tia CD lấy điểm F sao cho AH^2=HF.HD
a)chứng minh tam giác ADF vuông tại A
b)chứng minh BD^2=AB.AE
Cho hình chữ nhật ABCD. Kẻ AH BD (H BD).
a) Chứng minh: đồng dạng với
b) Chứng minh: AD^2 = DB.HD
c) Tia phân giác của góc ADB cắt AH và AB lần lượt tại M và K. Chứng minh: AK.AM = BK.HM
d) Gọi O là giao điểm của AC và BD. Lấy P thuộc AC, dựng hình chữ nhật AEPF (E∈ AB, F ∈ AD). BF cắt DE ở Q. Chứng minh rằng: EF//DB và 3 điểm A, Q, O thẳng hàng.
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
Cho hcn ABCD. Kẻ AH vuông góc BD (H thuộc BD).
a. Tia pg của góc ADB cắt AH và AB lần lượt tại M và K. Chứng minh:
AK.AM = BK.HM
b/ Gọi O là giao của AC và BD lấy P thuộc AC, dựng hình chữ nhật AEPF (E thuộc AB và F thuộc AD) BF cắt DE ở Q. Chứng minh:
+EF//DB
+A,O,Q thẳng hàng
cho hình chữ ngật ABCD có AB=3cm, BC=3cm
a) Tính BD
b) Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. Chứng minh: tam giác BCD đồng dạng tam giác CFB. Tính CF
c) Gọi O là giao điểm của AC và BD. Nối EO cắt CF tại I và cắt BC tại K. Chứng minh: I là trung điểm của CF
d) chứng minh: D,K, F thẳng hàng