cho hình chữ nhật ABCD,AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Cmr: \(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)
bạn nào bt lm giúp mik vs nhé
Bài tập: Cho hình chữ nhật ABCD có AB= 2BC. Trên BC lấy E, tia AE cắt đường thẳng CD tại F.Đường vuông góc với AF tại A cắt CD tại K.
a) Tính AK/AE
b) Chứng minh 1/AB^2= 1/AE^2 + 1/4AF^2
Giúp mn vs😊😊
cho hình vuông ABCD có cạnh bằng a và E là điểm bất kì trên cạch BC( e # BC) 2 đường thằng AE và CD cắt nhau tại F. tia Ax vuông góc vs AE tại A cắt đường thằng CD tại I.
a)cmr góc AEI=45 độ
b)cm \(\dfrac{1}{AB^2}\)= \(\dfrac{1}{AE^2}\)+ \(\dfrac{1}{ÀF^2}\)
c) cm diện tích tam giác AEI không nhỏ hơn \(\dfrac{1}{2}a^2\)
2. Cho hình vuông ABCD, lấy I thuộc AB, kẻ tia DI cắt đường thẳng BC tại E, kẻ đường thẳng qua D vuông góc DE cắt đường thẳng BC tại F. Chứng minh: \(\dfrac{1}{DI^2}+\dfrac{1}{DE^2}\)không phụ thuộc vào vị trí điểm I.
Cho hình vuông ABCD. Qua A kẻ đường thẳng cắt cạnh BC tại E và CD tại F. C/minh: \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)
Cho hình vuông ABCD. Gọi I là một điểm nẳm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L. Chứng minh rằng :
a) Tam giác DIL là một tam giác cân
b) Tổng \(\dfrac{1}{DI^2}+\dfrac{1}{DK^2}\) không đổi khi I thay đổi trên cạnh AB
1.Cho tam giác ABC vuông tại A có Ah là đường cao. E là hình chiếu H trên AC, D là hình chiếu H trên AB
a) Chứng minh \(\dfrac{DB}{EC}=\left(\dfrac{AB}{AC}\right)^3\)
b) Cho BC = 10cm, AH = 5cm. Tính SADHE ?
c) Kẻ phân giác BI (\(I\in AC\) ) và phân giác CF (\(F\in AB\) ) cắt nhau tại K. Chứng minh BI.CF = 2.BK.CK
2. Chứng minh hệ thức lượng đảo : nếu \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) hay AB.AC = BC.AH thì tam giác ABC cuông tại A có AH đường và H nằm giữa B và C
Cho tam giác ABC vuông tại A, đường cao AE. Gọi I là trung điểm AB. Vẽ IH vuông góc với BC tại h
a) Chứng minh \(\dfrac{1}{4IH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
b) Chứng minh AC2 + BH2 = CH2
\(cho\Delta abc\) vuông tại A đường cao AH vẽ HK\(\perp\)AB(K\(\in\)AB) câu a cm: AB.AK=HB.HC câu b cm: \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\) câu c vẽ HE\(\perp\)AC. CM: \(\dfrac{BH}{CE}=\dfrac{AB^3}{AC^3}\) câu d giả sử AB<AC. Lấy M\(\in\)HC; HM=HA. Qua M vẽ 1 đường thẳng \(\perp\) BC cắt AC tại F. CM: \(\dfrac{1}{AH^2}=\dfrac{1}{AF^2}+\dfrac{1}{AC^2}\)